
B1
ARM and Thumb 
Assembler 
Instructions
Andrew Sloss, 
ARM; Dominic Symes, ARM; 

Chris Wright, 
Ultimodule Inc.

A P P E N D I X



B1.1 Using This Appendix B1-3

B1.2 Syntax B1-4

B1.3 Alphabetical List of ARM and Thumb Instructions B1-8

B1.4 ARM Assembler Quick Reference B1-49

B1.5 GNU Assembler Quick Reference B1-60

This appendix lists the ARM and Thumb instructions available up to, and 
including, ARM architecture ARMv6, which was just released at the time of 
writing. We list the operations in alphabetical order for easy reference. Sections 
B1.5 and B1.4 give quick reference guides to the ARM and GNU assemblers 
armasm and gas.

We have designed this appendix for practical programming use, both for writing 
assembly code and for interpreting disassembly output. It is not intended as a 
defi nitive architectural ARM reference. In particular, we do not list the exhaustive 
details of each instruction bitmap encoding and behavior. For this level of detail, see 
the ARM Architecture Reference Manual, edited by David Seal, published by Addison 
Wesley. We do give a summary of ARM and Thumb instruction set encodings in 
Appendix B2.

 B1.1  Using This Appendix

Each appendix entry begins by enumerating the available instructions formats for the 
given instruction class. For example, the fi rst entry for the instruction class ADD reads

1. ADD<cond>{S} Rd, Rn, #<rotated_immed> ARMv1



B1-4 Appendix B1 ARM and Thumb Assembler Instructions

The fi elds <cond> and <rotated_immed> are two of a number of standard fi elds 
described in Section B1.2. Rd and Rn denote ARM registers. The instruction is only 
executed if the condition <cond> is passed. Each entry also describes the action of 
the instruction if it is executed.

The {S} denotes that you may apply an optional S suffi x to the instruction. 
Finally, the right-hand column specifi es that the instruction is available from the 
listed ARM architecture version onwards. Table B1.1 shows the entries possible 
for this column.

TABLE B1.1 Instruction types.

Type Meaning

ARMvX 32-bit ARM instruction fi rst appearing in ARM architecture version X

THUMBvX 16-bit Thumb instruction fi rst appearing in Thumb architecture version X

MACRO Assembler pseudoinstruction

Note that there is no direct correlation between the Thumb architecture 
number and the ARM architecture number. The THUMBv1 architecture is used in 
ARMv4T processors; the THUMBv2 architecture, in ARMv5T processors; and the 
THUMBv3 architecture, in ARMv6 processors.

Each instruction defi nition is followed by a notes section describing restrictions 
on the use of the instruction. When we make a statement such as “ Rd must not be 
pc,’’ we mean that the description of the function only applies when this condition 
holds. If you break the condition, then the instruction may be unpredictable or 
have predictable effects that we haven’t had space to describe here. Well-written 
programs should not need to break these conditions.

 B1.2  Syntax

We use the following syntax and abbreviations throughout this appendix.

Optional Expressions
{<expr>} is an optional expression. For example, LDR{B} is shorthand for 
LDR or LDRB.

{<exp1>|<exp2>|...|<expN>}, including at least one “|’’ divider, is a list 
of expressions. One of the listed expressions must appear. For example 
LDR{B|H} is shorthand for LDRB or LDRH. It does not include LDR. We would 
represent these three possibilities by LDR{|B|H}. 

■

■



Register Names
Rd, Rn, Rm, Rs, RdHi, RdLo represent ARM registers in the range r0 to r15. 

Ld, Ln, Lm, Ls represent low-numbered ARM registers in the range r0 to r7. 

Hd, Hn, Hm, Hs represent high-numbered ARM registers in the range r8 to 
r15. 

Cd, Cn, Cm represent coprocessor registers in the range c0 to c15. 

sp, lr, pc are names for r13, r14, r15, respectively. 

Rn[a] denotes bit a of register Rn. Therefore Rn[a] � (Rn » a) & 1.

Rn[a:b] denotes the a � 1� b bit value stored in bits a to b of Rn inclusive. 

RdHi:RdLo represents the 64-bit value with high 32 RDHi bits and low 32 
bits RdLo. 

Values Stored as Immediates
<immedN> is any unsigned N-bit immediate. For example, <immed8> 
represents any integer in the range 0 to 255. <immed5>*4 represents any 
integer in the list 0, 4, 8, ..., 124.

<addressN> is an address or label stored as a relative offset. The address 
must be in the range pc � 2N �  address �pc � 2N. Here, pc is the address of 
the instruction plus eight for ARM state, or the address of the instruction 
plus four for Thumb state. The address must be four-byte aligned if the 
destination is an ARM instruction or two-byte aligned if the destination is a 
Thumb instruction.

<A-B> represents any integer in the range A to B inclusive.

<rotated_immed> is any 32-bit immediate that can be represented as an eight-
bit unsigned value rotated right (or left) by an even number of bit positions. 
In other words, <rotated_immed> = <immed8> ROR (2*<immed4>). For 
example 0xff, 0x104, 0xe0000005, and 0x0bc00000 are possible values 
for <rotated_immed>. However, 0x101 and 0x102 are not. When you use a 
rotated immediate, <shifter_C> is set according to Table B1.3 (discussed in 
Section Shift Operations). A nonzero rotate may cause a change in the carry 
fl ag. For this reason, you can also specify the rotation explicitly, using the 
assembly syntax <immed8>, 2*<immed4>. 

Condition Codes and Flags
<cond> represents any of the standard ARM condition codes. Table B1.2 
shows the possible values for <cond>. 

■

■

■

■

■

■

■

■

■

■

■

■

■

 B1.2 Syntax B1-5



B1-6 Appendix B1 ARM and Thumb Assembler Instructions

TABLE B1.2 ARM condition mnemonics.

<cond> Instruction is executed when cpsr condition

{|AL} ALways TRUE

EQ EQual (last result zero) Z==1

NE Not Equal (last result nonzero) Z==0

{CS|HS} 
Carry Set, unsigned Higher or Same (following a 
compare) 

C==1

{CC|LO} Carry Clear, unsigned LOwer (following a comparison) C==0

MI MInus (last result negative) N==1

PL PLus (last result greater than or equal to zero) N==0

VS V fl ag Set (signed overfl ow on last result) V==1

VC V fl ag Clear (no signed overfl ow on last result) V==0

HI unsigned HIgher (following a comparison) C==1 && Z==0

LS unsigned Lower or Same (following a comparison) C==0 || Z==1

GE signed Greater than or Equal N==V

LT signed Less Than N!=V

GT signed Greater Than N==V && Z==0

LE signed Less than or Equal N!=V || Z==1

NV NeVer—ARMv1 and ARMv2 only—DO NOT USE FALSE

<SignedOverfl ow> is a fl ag indicating that the result of an arithmetic 
operation suffered from a signed overfl ow. For example, 0x7fffffff + 1 = 
0x80000000 produces a signed overfl ow because the sum of two positive 
32-bit signed integers is a negative 32-bit signed integer. The V fl ag in the cpsr 
typically records signed overfl ows.

<UnsignedOverfl ow> is a fl ag indicating that the result of an arithmetic 
operation suffered from an unsigned overfl ow. For example, 0xffffffff + 1 
= 0 produces an overfl ow in unsigned 32-bit arithmetic. The C fl ag in the cpsr 
typically records unsigned overfl ows.

<NoUnsignedOverfl ow> is the same as 1 – <UnsignedOverfl ow>.

■

■

■



<Zero> is a fl ag indicating that the result of an arithmetic or logical operation 
is zero. The Z fl ag in the cpsr typically records the zero condition.

<Negative> is a fl ag indicating that the result of an arithmetic or logical 
operation is negative. In other words, <Negative> is bit 31 of the result. The 
N fl ag in the cpsr typically records this condition.

Shift Operations
<imm_shift> represents a shift by an immediate specifi ed amount. The 
possible shifts are LSL #<0-31>, LSR #<1-32>, ASR #<1-32>, ROR #<1-
31>, and RRX. See Table B1.3 for the actions of each shift.

<reg_shift> represents a shift by a register-specifi ed amount. The 
possible shifts are LSL Rs, LSR Rs, ASR Rs, and ROR Rs. Rs must not be pc . 
The bottom eight bits of Rs are used as the shift value k in Table B1.3. Bits 
Rs[31:8] are ignored.

<shift> is shorthand for <imm_shift> or <reg_shift>.

<shifted_Rm> is shorthand for the value of Rm after the specifi ed shift has 
been applied. See Table B1.3.

<shifter_C> is shorthand for the carry value output by the shifting circuit. 
See Table B1.3. 

 

Shift k range  <shifted_Rm> <shifter_C>

LSL k k � 0 Rm C (from cpsr)

LSL k 1 � k � 31 Rm « k Rm[32-k]

LSL k k � 32 0 Rm[0]

LSL k k � 33 0 0

LSR k k � 0 Rm C

LSR k 1 � k � 31 (unsigned)Rm » k  Rm[k-1]

LSR k k � 32 0  Rm[31]

LSR k k � 33 0  0

ASR k k � 0 Rm  C

■

■

■

■

■

■

■

 B1.2 Syntax B1-7

TABLE B1.3 Barrel shifter circuit outputs for different shift types.           



B1-8 Appendix B1 ARM and Thumb Assembler Instructions

Shift k range  <shifted_Rm> <shifter_C>

ASR k 1 � k � 31 (signed)Rm»k  Rm[k-1]

ASR k k � 32 � Rm[31]  Rm[31]

ROR k k � 0 Rm  C

ROR k 1 � k � 31
((unsigned)Rm » k)|

(Rm » (32-k)) 
 Rm[k-1]

ROR k k � 32 Rm ROR (k & 31)  Rm[(k-1) & 31]

RRX 
(C « 31) | 

((unsigned)Rm » 1) 
 Rm[0]

 B1.3 
 Alphabetical List of ARM 
and Thumb Instructions

Instructions are listed in alphabetical order. However, where signed and unsigned 
variants of the same operation exist, the main entry is under the signed variant.

ADC Add two 32-bit values and carry

1. ADC<cond>{S} Rd, Rn, #<rotated_immed> ARMv1
2. ADC<cond>{S} Rd, Rn, Rm {, <shift>}  ARMv1
3. ADC Ld, Lm    THUMBv1

Action  Effect on the cpsr 

1. Rd = Rn + <rotated_immed> + C Updated if S suffi x specifi ed
2. Rd = Rn + <shifted_Rm> + C  Updated if S suffi x specifi ed 
3. Ld = Ld   + Lm + C  Updated (see Notes below)

Notes 

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, 
Z = <Zero>, C = <UnsignedOverfl ow>, V = <SignedOverfl ow>.

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr; in this 
case, the cpsr is set to the value of the spsr.

If Rn or Rm is pc, then the value used is the address of the instruction plus 
eight bytes. 

■

■

■



Examples

 ADDS r0, r0, r2 ; fi rst half of a 64-bit add
 ADC r1, r1, r3 ; second half of a 64-bit add
 ADCS r0, r0, r0 ; shift r0 left, inserting carry (RLX)

ADD Add two 32-bit values

  1. ADD<cond>S Rd, Rn, #<rotated_immed>  ARMv1 
  2. ADD<cond>S Rd, Rn, Rm {, <shift>} ARMv1 
  3. ADD Ld, Ln, #<immed3>  THUMBv1
  4. ADD Ld, #<immed8>  THUMBv1 
  5. ADD Ld, Ln, Lm  THUMBv1 
  6. ADD Hd, Lm  THUMBv1 
  7. ADD Ld, Hm  THUMBv1 
  8. ADD Hd, Hm  THUMBv1 
  9. ADD Ld, pc, #<immed8>*4  THUMBv1 
 10. ADD Ld, sp, #<immed8>*4 THUMBv1 
 11. ADD sp, #<immed7>*4 THUMBv1

Action Effect on the cpsr

  1. Rd = Rn + <rotated_immed> Updated if S suffi x specifi ed 
  2. Rd = Rn + <shifted_Rm> Updated if S suffi x specifi ed 
  3. Ld = Ln + <immed3>  Updated (see Notes below) 
  4. Ld = Ld + <immed8> Updated (see Notes below) 
  5. Ld = Ln + Lm Updated (see Notes below) 
  6. Hd = Hd + Lm Preserved 
  7. Ld = Ld + Hm Preserved 
  8. Hd = Hd + Hm Preserved 
  9. Ld = pc + 4*<immed8> Preserved 
 10. Ld = sp + 4*<immed8> Preserved 
 11. sp = sp + 4*<immed7> Preserved 

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, 
Z = <Zero>, C = <UnsignedOverfl ow>, V = <SignedOverfl ow>. 

If Rd or Hd is pc, then the instruction effects a jump to the calculated address. 
If the operation updates the cpsr, then the processor mode must have an spsr; 
in this case, the cpsr is set to the value of the spsr. 

If Rn or Rm is pc, then the value used is the address of the instruction plus 
eight bytes. 

If Hd or Hm is pc, then the value used is the address of the instruction plus 
four bytes. 

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-9



B1-10 Appendix B1 ARM and Thumb Assembler Instructions

Examples

ADD r0, r1, #4 ; r0 = r1 + 4
ADDS r0, r2, r2 ; r0 = r2 + r2 and fl ags updated
ADD r0, r0, r0, LSL #1 ; r0 = 3*r0
ADD pc, pc, r0, LSL #2 ; skip r0+1 instructions
ADD r0, r1, r2, ROR r3 ; r0 = r1 + ((r2r»3)|(r2«(32-r3))
ADDS pc, lr, #4 ; jump to lr+4, restoring the cpsr

ADR  Address relative 

 1. ADR{L}<cond> Rd, <address> MACRO 

This is not an ARM instruction, but an assembler macro that attempts to set Rd 
to the value <address> using a pc-relative calculation. The ADR instruction macro 
always uses a single ARM (or Thumb) instruction. The long-version ADRL always 
uses two ARM instructions and so can access a wider range of addresses. If the 
assembler cannot generate an instruction sequence reaching the address, then it 
will generate an error.

The following example shows how to call the function pointed to by r9. We use 
ADR to set lr to the return address; in this case, it will assemble to ADD lr, pc, #4. 
Recall that pc reads as the address of the current instruction plus eight in this case.

 ADR lr, return_address ; set return address
 MOV r0, #0 ; set a function argument
 BX r9 ; call the function
return_address ; resume 

AND Logical bitwise AND of two 32-bit values 

1. AND<cond>{S} Rd, Rn, #<rotated_immed> ARMv1 
2. AND<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1
3. AND Ld, Lm THUMBv1

Action   Effect on the cpsr

1. Rd = Rn & <rotated_immed> Updated if S suffi x specifi ed 
2. Rd = Rn & <shifted_Rm> Updated if S suffi x specifi ed 
3. Ld = Ld & Lm Updated (see Notes below) 

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, 
Z = <Zero>, C = <shifter_C> (see Table B1.3), V is preserved.

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr; in this 
case, the cpsr is set to the value of the spsr.

■

■



If Rn or Rm is pc, then the value used is the address of the instruction plus 
eight bytes. 

Example

AND r0, r0, #0xFF ; extract the lower 8 bits of a byte
ANDS r0, r0, #1 « 31 ; extract sign bit 

ASR Arithmetic shift right for Thumb (see MOV for the ARM equivalent)

1. ASR Ld, Lm, #<immed5> THUMBv1
2. ASR Ld, Ls THUMBv1

Action Effect on the cpsr

1. Ld = Lm ASR #<immed5> Updated (see Notes below)
2. Ld = Ld ASR Ls[7:0] Updated 

Note 

The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table 
B1.3). 

B Branch relative

 1. B<cond> <address25> ARMv1
 2. B<cond> <address8>  THUMBv1
 3. B  <address11> THUMBv1 

 Branches to the given address or label. The address is stored as a relative 
offset.

Examples

    B label ; branch unconditionally to a label
    BGT loop ; conditionally continue a loop 

BIC Logical bit clear (AND NOT) of two 32-bit values

1. BIC<cond>{S} Rd, Rn, #<rotated_immed>  ARMv1
2. BIC<cond>{S} Rd, Rn, Rm {, <shift>}   ARMv1
3. BIC Ld, Lm THUMBv1 

Action Effect on the cpsr

1. Rd = Rn & ~<rotated_immed> Updated if S suffi x specifi ed
2. Rd = Rn & ~<shifted_Rm> Updated if S suffi x specifi ed
3. Ld = Ld & ~Lm Updated (see Notes below)

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-11



B1-12 Appendix B1 ARM and Thumb Assembler Instructions

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = 
<Zero>, C = <shifter_C> (see Table B1.3), V is preserved.

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr; in this 
case, the cpsr is set to the value of the spsr.

If Rn or Rm is pc, then the value used is the address of the instruction plus 
eight bytes. 

Examples

BIC r0, r0, #1 « 22 ; clear bit 22 of r0 

BKPT Breakpoint instruction

1. BKPT <immed16> ARMv5

2. BKPT <immed8> THUMBv2 

The breakpoint instruction causes a prefetch data abort, unless overridden by 
debug hardware. The ARM ignores the immediate value. This immediate can be 
used to hold debug information such as the breakpoint number.

BL Relative branch with link (subroutine call)

1. BL<cond> <address25> ARMv1

2. BL <address22> THUMBv1 

Action                  Effect on the cpsr

1. lr = ret+0; pc = <address25>       None

2. lr = ret+1; pc = <address22>       None 

Note

These instructions set lr to the address of the following instruction ret plus 
the current cpsr T-bit setting. Therefore you can return from the subroutine 
using BX lr to resume execution address and ARM or Thumb state. 

Examples

BL  subroutine ; call subroutine (return with MOV pc,lr)

BLVS overfl ow ; call subroutine on an overfl ow 

BLX Branch with link and exchange (subroutine call with possible state switch)

1. BLX <address25> ARMv5 

■

■

■

■



2. BLX<cond> Rm ARMv5 

3. BLX <address22> THUMBv2

4. BLX Rm THUMBv2

Action Effect on the cpsr

1. lr = ret+0; pc = <address25> T=1 (switch to Thumb state)

2. lr = ret+0; pc = Rm & 0xfffffffe T=Rm & 1

3. lr = ret+1; pc = <address22> T=0 (switch to ARM state)

4. lr = ret+1; pc = Rm & 0xfffffffe T=Rm & 1

Notes

These instructions set lr to the address of the following instruction ret plus 
the current cpsr T-bit setting. Therefore you can return from the subroutine 
using BX lr to resume execution address and ARM or Thumb state.

Rm must not be pc.

Rm & 3 must not be 2. This would cause a branch to an unaligned ARM 
instruction. 

Example

BLX thumb_code ; call a Thumb subroutine from ARM state
BLX r0 ; call the subroutine pointed to by r0
 ; ARM code if r0 even, Thumb if r0 odd 

BX      Branch with exchange (branch with possible state switch)
BXJ

1. BX<cond> Rm ARMv4T
2. BX Rm THUMBv1
3. BXJ<cond> Rm ARMv5J 

Action Effect on the cpsr

1. pc = Rm & 0xfffffffe T=Rm & 1
2. pc = Rm & 0xfffffffe T=Rm & 1
3. Depends on JE confi guration bit J,T affected

Notes

If Rm is pc and the instruction is word aligned, then Rm takes the value of the 
current instruction plus eight in ARM state or plus four in Thumb state.

Rm & 3 must not be 2. This would cause a branch to an unaligned ARM 
instruction.

■

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-13



B1-14 Appendix B1 ARM and Thumb Assembler Instructions

If the JE (Java Enable) confi guration bit is clear, then BXJ behaves as a BX. 
Otherwise, the behavior is defi ned by the architecture of the Java Extension 
hardware. Typically it sets J = 1 in the cpsr and starts executing Java instructions 
from a general purpose register designated as the Java program counter jpc. 

Examples

BX lr ; return from ARM or Thumb subroutine
BX r0 ; branch to ARM or Thumb function pointer r0 

CDP Coprocessor data processing operation

1. CDP<cond> <copro>, <op1>, Cd, Cn, Cm, <op2> ARMv2
2. CDP2 <copro>, <op1>, Cd, Cn, Cm, <op2> ARMv5 

These instructions initiate a coprocessor-dependent operation. <copro> is the 
number of the coprocessor in the range p0 to p15. The core takes an undefi ned 
instruction trap if the coprocessor is not present. The coprocessor operation 
specifi ers <op1> and <op2>, and the coprocessor register numbers Cd, Cn, Cm, 
are interpreted by the coprocessor and ignored by the ARM. CDP2 provides an 
additional set of coprocessor instructions.

CLZ Count leading zeros

1. CLZ<cond> Rd, Rm ARMv5 

Rn is set to the maximum left shift that can be applied to Rm without unsigned 
overfl ow. Equivalently, this is the number of zeros above the highest one in the 
binary representation of Rm. If Rm = 0, then Rn is set to 32. The following example 
normalizes the value in r0 so that bit 31 is set

CLZ r1, r0 ; fi nd normalization shift
MOV r0, r0, LSL r1 ; normalize so bit 31 is set (if r0!=0) 

CMN Compare negative

1. CMN<cond> Rn, #<rotated_immed> ARMv1
2. CMN<cond> Rn, Rm {, <shift>} ARMv1
3. CMN Ln, Lm THUMBv1 

Action

1. cpsr fl ags set on the result of (Rn + <rotated_immed>) 
2. cpsr fl ags set on the result of (Rn + <shifted_Rm>) 
3. cpsr fl ags set on the result of (Ln + Lm) 

Notes

In the cpsr: N = <Negative>, Z = <Zero>, C = <Unsigned-Overfl ow>, V = 
<SignedOverfl ow>. These are the same fl ags as generated by CMP with the 
second operand negated.

■

■



If Rn or Rm is pc, then the value used is the address of the instruction plus 
eight bytes. 

Example

CMN r0, #3 ; compare r0 with -3

BLT label ; if (r0 ‹� 3) goto label 

CMP Compare two 32-bit integers

1. CMP<cond> Rn, #<rotated_immed> ARMv1
2. CMP<cond> Rn, Rm {, <shift>} ARMv1
3. CMP Ln, #<immed8> THUMBv1
4. CMP Rn, Rm THUMBv1 

Action

1. cpsr fl ags set on the result of (Rn - <rotated_immed>) 
2. cpsr fl ags set on the result of (Rn - <shifted_Rm>) 
3. cpsr fl ags set on the result of (Ln - <immed8>) 
4. cpsr fl ags set on the result of (Rn - Rm) 

Notes

In the cpsr: N = <Negative>, Z = <Zero>, C = <NoUnsigned-Overfl ow>, 
V = <SignedOverfl ow>. The carry fl ag is set this way because the subtract x – y is 
implemented as the add x + ~ y + 1. The carry fl ag is one if x + ~ y + 1 overfl ows. 
This happens when x � y (equivalently when x – Ây doesn’t overfl ow).

If Rn or Rm is pc, then the value used is the address of the instruction plus eight 
bytes for ARM instructions, or plus four bytes for Thumb instructions. 

Example

CMP r0, r1, LSR#2 ; compare r0 with (r1/4)
BHS label ; if (r0 >= (r1/4)) goto label; 

CPS Change processor state; modifi es selected bits in the cpsr 

1. CPS         #<mode> ARMv6
2. CPSID <fl ags> {, #<mode>} ARMv6
3. CPSIE <fl ags> {, #<mode>} ARMv6
4. CPSID <fl ags> THUMBv3
5. CPSIE <fl ags> THUMBv3  

Action 

1. cpsr[4:0] = <mode>
2. cpsr = cpsr | mask; { cpsr[4:0]=<mode> }

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-15



B1-16 Appendix B1 ARM and Thumb Assembler Instructions

3. cpsr = cpsr & ~mask; { cpsr[4:0]=<mode> }
4. cpsr = cpsr | mask
5. cpsr = cpsr & ~mask 

Bits are set in mask according to letters in the <fl ags> value as in Table B1.4. The ID 
(interrupt disable) variants mask interrupts by setting cpsr bits. The IE (interrupt 
enable) variants unmask interrupts by clearing cpsr bits.

Character cpsr bit affected Bit set in mask

a imprecise data Abort mask bit 0 � 100 = 1 << 8

i IRQ mask bit 0 � 080 = 1 << 7

f FIQ mask bit 0 � 040 = 1 << 6

CPY Copy one ARM register to another without affecting the cpsr.

1. CPY<cond> Rd, Rm ARMv6
2. CPY Rd, Rm THUMBv3 

This assembles to MOV <cond> Rd, Rm except in the case of Thumb where Rd and 
Rm are low registers in the range r0 to r7. Then it is a new operation that sets Rd=Rm 
without affecting the cpsr.

EOR Logical exclusive OR of two 32-bit values

1. EOR<cond>{S} Rd, Rn, #<rotated_immed> ARMv1
2. EOR<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1
3. EOR Ld, Lm THUMBv1 

Action Effect on the cpsr 

1. Rd = Rn ^<rotated_immed> Updated if S suffi x specifi ed 
2. Rd = Rn ^ <shifted_Rm> Updated if S suffi x specifi ed 
3. Ld = Ld ^ Lm Updated (see Notes below) 

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, 
Z = <Zero>, C = <shifter_C> (see Table B1.3), V is preserved.

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr; in this 
case, the cpsr is set to the value of the spsr.

■

■

TABLE B1.4 CPS fl ags characters.



If Rn or Rm is pc, then the value used is the address of the instruction plus eight 
bytes. 

Example

 EOR r0, r0, #1 � 16 ; toggle bit 16 

LDC Load to coprocessor single or multiple 32-bit values

1. LDC<cond>{L} <copro>, Cd, [Rn {, #{-}<immed8>*4}]{!} ARMv2
2. LDC<cond>{L} <copro>, Cd, [Rn],        #{-}<immed8>*4 ARMv2
3. LDC<cond>{L} <copro>, Cd, [Rn],        <option> ARMv2 
4. LDC2{L} <copro>, Cd, [Rn {,         #{-}<immed8>*4}]{!} ARMv5
5. LDC2{L} <copro>, Cd, [Rn],        #{-}<immed8>*4 ARMv5
6. LDC2{L} <copro>, Cd, [Rn],         <option> ARMv5

These instructions initiate a memory read, transferring data to the given coprocessor. 
<copro> is the number of the coprocessor in the range p0 to p15. The core takes an 
undefi ned instruction trap if the coprocessor is not present. The memory read consists 
of a sequence of words from sequentially increasing addresses. The initial address is 
specifi ed by the addressing mode in Table B1.5. The coprocessor controls the number 
of words transferred, up to a maximum limit of 16 words. The fi elds {L} and Cd are 
interpreted by the coprocessor and ignored by the ARM. Typically Cd specifi es the 
destination coprocessor register for the transfer. The <option> fi eld is an eight-bit 
integer enclosed in { }. Its interpretation is coprocessor dependent.

Addressing format  Address accessed  Value written back to Rn

[Rn {,# { - } <immed>}]   Rn + {{ - } <immed>}   Rn preserved

[Rn {,# { - } <immed>}]!   Rn + {{ - } <immed>}   Rn +  {{ - }<immed>}

[Rn], # { - } <immed>   Rn   Rn +  { - }<immed>

[Rn], < option>   Rn   Rn preserved

If the address is not a multiple of four, then the access is unaligned. The restrictions 
on unaligned accesses are the same as for LDM.

LDM Load multiple 32-bit words from memory to ARM registers

1. LDM<cond><amode> Rn{!}, <register_list>{^} ARMv1
2. LDMIA Rn!,   <register_list> THUMBv1

These instructions load multiple words from sequential memory addresses. The 
<register_list> specifi es a list of registers to load, enclosed in curly brackets 

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-17

TABLE B1.5 LDC addressing modes.



B1-18 Appendix B1 ARM and Thumb Assembler Instructions

{ }. Although the assembler allows you to specify the registers in the list in any order, 
the order is not stored in the instruction, so it is good practice to write the list in 
increasing order of register number because this is the usual order of the memory 
transfer.

The following pseudocode shows the normal action of LDM. We use <register_ 
list>[i] to denote the register appearing at position i in the list, starting at 0 for the 
fi rst register. This assumes that the list is in order of increasing register number. 

N = the number of registers in <register_list>
start = the lowest address accessed given in Table B1.6
for (i=0; i<N; i++)
 <register_list>[i] = memory(start+i*4, 4);
if (! specifi ed) then update Rn according to Table B1.6 

Note that memory(a, 4) returns the four bytes at address a packed according 
to the current processor data endianness. If a is not a multiple of four, then 
the load is unaligned. Because the behavior of an unaligned load depends on 
the architecture revision, memory system, and system coprocessor (CP15) 
confi guration, it’s best to avoid unaligned loads if possible. Assuming that the 
external memory system does not abort unaligned loads, then the following rules 
usually apply:

If the core has a system coprocessor and bit 1 (A-bit) or bit 22 (U-bit) of 
CP15:c1:c0:0 is set, then unaligned load multiples cause an alignment fault 
data abort exception.

Otherwise the access ignores the bottom two address bits. 

Table B1.6 lists the possible addressing modes specifi ed by <amode>. If you 
specify the !, then the base address register is updated according to Table B1.6; 
otherwise it is preserved. Note that the lowest register number is always read from 
the lowest address.

The first half of the addressing mode mnemonics stands for Increment 
After, Increment Before, Decrement After, and Decrement Before, respectively. 
Increment modes load the registers sequentially forward, starting from address 
Rn (increment after) or Rn + 4 (increment before). Decrement modes have 
the same effect as if you loaded the register list backwards from sequentially 

■

■

TABLE B1.6 LDM addressing modes.

Addressing 
mode 

Lowest address 
accessed 

Highest address 
accessed 

Value written back
to Rn if ! specifi ed

{IA|FD} Rn Rn + N*4 - 4 Rn + N*4

{IB|ED} Rn + 4 Rn + N*4 Rn + N*4

{DA|FA} Rn � N*4 + 4 Rn Rn � N*4

{DB|EA} Rn � N*4 Rn - 4 Rn � N*4



descending memory addresses, starting from address Rn (decrement after) or 
Rn – 4 (decrement before).

The second half of the addressing mode mnemonics stands for the stack type you 
can implement with that address mode: Full Descending, Empty Descending, Full 
Ascending, and Empty Ascending, With a full stack, Rn points to the last stacked value; 
with an empty stack, Rn points to the fi rst unused stack location. ARM stacks are 
usually full descending. You should use full descending or empty ascending stacks by 
preference, since LDC also supports these addressing modes.

Notes 

For Thumb (format 2), Rn and the register list registers must be in the range r0 
to r7.

The number of registers N in the list must be nonzero. 

Rn must not be pc. 

Rn must not appear in the register list if ! (writeback) is specifi ed. 

If pc appears in the register list, then on ARMv5 and above the processor performs 
a BX to the loaded address. For ARMv4 and below, the processor branches to the 
loaded address. 

If ^ is specifi ed, then the operation is modifi ed. The processor must not be in user 
or system mode. If pc is not in the register list, then the registers appearing in the 
register list refer to the user mode versions of the registers and writeback must 
not be specifi ed. If pc is in the register list, then the spsr is copied to the cpsr in 
addition to the standard operation. 

The time order of the memory accesses may depend on the implementation. Be 
careful when using a load multiple to access I/O locations where the access order 
matters. If the order matters, then check that the memory locations are marked 
as I/O in the page tables, do not cross page boundaries, and do not use pc in the 
register list. 

Examples

LDMIA r4!, {r0, r1} ; r0=*r4, r1=*(r4+4), r4+=8
LDMDB r4!, {r0, r1} ; r1=*(r4-4), r0=*(r4-8), r4-=8
LDMEQFD sp!, {r0, pc} ; if (result zero) then unstack r0, pc
LDMFD sp, {sp}^ ; load sp_usr from sp_current
LDMFD sp!, {r0-pc}^ ; return from exception, restore cpsr

LDR Load a single value from a virtual address in memory

 1. LDR<cond>{|B} Rd, [Rn {, #{-}<immed12>}]{!} ARMv1
 2. LDR<cond>{|B} Rd, [Rn, {-}Rm {,<imm_shift>}]{!} ARMv1

■

■

■

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-19



B1-20 Appendix B1 ARM and Thumb Assembler Instructions

 3. LDR<cond>{|B}{T} Rd, [Rn], #{-}<immed12> ARMv1
 4. LDR<cond>{|B}{T} Rd, [Rn], {-}Rm {,<imm_shift>} ARMv1
 5. LDR<cond>{H|SB|SH} Rd, [Rn, {, #{-}<immed8>}]{!} ARMv4
 6. LDR<cond>{H|SB|SH} Rd, [Rn, {-}Rm]{!} ARMv4
 7. LDR<cond>{H|SB|SH} Rd, [Rn], #{-}<immed8> ARMv4
 8. LDR<cond>{H|SB|SH} Rd, [Rn], {-}Rm ARMv4
 9. LDR<cond>D Rd, [Rn, {, #{-}<immed8>}]{!} ARMv5E
10. LDR<cond>D Rd, [Rn, {-}Rm]{!} ARMv5E
11. LDR<cond>D Rd, [Rn], #{-}<immed8> ARMv5E
12. LDR<cond>D Rd, [Rn], {-}Rm ARMv5E
13. LDREX<cond> Rd, [Rn] ARMv6
14. LDR{|B|H} Ld, [Ln, #<immed5>*<size>] THUMBv1
15. LDR{|B|H|SB|SH} Ld, [Ln, Lm] THUMBv1
16. LDR Ld, [pc, #<immed8>*4] THUMBv1
17. LDR Ld, [sp, #<immed8>*4] THUMBv1
18. LDR<cond><type> Rd, <label> MACRO
19. LDR<cond> Rd, =<32-bit-value> MACRO

Formats 1 to 17 load a single data item of the type specifi ed by the opcode suffi x, 
using a preindexed or postindexed addressing mode. Tables B1.7 and B1.8 show the 
different addressing modes and data types.

Addressing format  Address a accessed  Value written back to Rn

[Rn {,#{-}<immed>}]   Rn + {{-}<immed>}   Rn preserved

[Rn {,#{-}<immed>}]!   Rn + {{-}<immed>}   Rn + {{-}<immed>}

[Rn, {-}Rm {,<shift>}]   Rn + {-}<shifted_Rm>   Rn preserved

[Rn, {-}Rm {,<shift>}]!   Rn + {-}<shifted_Rm>   Rn + {-}<shifted_Rm>

[Rn], #{-}<immed>   Rn   Rn + {-}<immed>

[Rn], {-}Rm {,<shift>}   Rn   Rn + {-}<shifted_Rm>

In Table B1.8 memory(a,  n) reads n sequential bytes from address a. The bytes 
are packed according to the confi gured processor data endianness. The function  
memoryT(a, n) performs the same access but with user mode privileges, regardless of 
the current processor mode. The function memoryEx(a, n) used by LDREX performs 
the access and marks the access as exclusive. If address a has the shared TLB attribute, 
then this marks address a as exclusive to the current processor and clears any other 
exclusive addresses for this processor. Otherwise the processor remembers that there 
is an outstanding exclusive access. Exclusivity only affects the action of the STREX 
instruction.

TABLES B1.7 LDR Addressing Modes.



Load  Datatype  <size> (bytes)  Action

LDR word 4 Rd = memory(a, 4)

LDRB unsigned Byte 1 Rd = (zero-extend)memory(a, 1)

LDRBT Byte Translated 1 Rd = (zero-extend)memoryT(a, 1)

LDRD Double word 8 Rd = memory(a, 4) 
R(d+1) = memory(a+4, 4)

LDREX word EXclusive 4 Rd = memoryEx(a, 4)

LDRH unsigned Halfword 2 Rd = (zero-extend)memory(a, 2)

LDRSB Signed Byte 1 Rd = (sign-extend)memory(a, 1)

LDRSH Signed Halfword 2 Rd = (sign-extend)memory(a, 2)

LDRT word Translated 4 Rd = memoryT(a, 4)

If address a is not a multiple of <size>, then the load is unaligned. Because the 
behavior of an unaligned load depends on the architecture revision, memory system, 
and system coprocessor (CP15) confi guration, it’s best to avoid unaligned loads if 
possible. Assuming that the external memory system does not abort unaligned loads, 
then the following rules usually apply. In the rules, A is bit 1 of system coprocessor 
register CP15:c1:c0:0, and U is bit 22 of CP15:c1:c0:0, introduced in ARMv6. If there is 
no system coprocessor, then A = U = 0.

If A = 1, then unaligned loads cause an alignment fault data abort exception 
except that word-aligned double-word loads are supported if U = 1. 

If A = 0 and U = 1, then unaligned loads are supported for LDR{|T|H|SH}. 
Word-aligned loads are supported for LDRD. A non-word-aligned LDRD generates 
an alignment fault data abort. 

If A = 0 and U = 0, then LDR and LDRT return the value memory(a & ~ 3, 4) ROR 
((a&3)*8). All other unaligned operations are unpredictable but do not 
generate an alignment fault. 

Format 18 generates a pc-relative load accessing the address specified by <label>. 
In other words, it assembles to LDR<cond><type> Rd, [pc, #<offset>] 
whenever this instruction is supported and <offset>=<label>-pc is in range.

Format 19 generates an instruction to move the given 32-bit value to the register 
Rd. Usually the instruction is LDR<cond> Rd, [pc, #<offset>], where the 32-bit 
value is stored in a literal pool at address pc+<offset>.

Notes

For double-word loads (formats 9 to 12), Rd must be even and in the range r0 
to r12. 

If the addressing mode updates Rn, then Rd and Rn must be distinct. 

■

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-21

TABLES B1.8 LDR datatypes.



B1-22 Appendix B1 ARM and Thumb Assembler Instructions

If Rd is pc, then <size> must be 4. Up to ARMv4, the core branches to the loaded 
address. For ARMv5 and above, the core performs a BX to the loaded address. 

If Rn is pc, then the addressing mode must not update Rn . The value used for 
Rn is the address of the instruction plus eight bytes for ARM or four bytes for 
Thumb. 

Rm must not be pc.

For ARMv6 use LDREX and STREX to implement semaphores rather than SWP. 

Examples     

LDR r0, [r0] ; r0 = *(int*)r0;
LDRSH r0, [r1], #4 ; r0 = *(short*)r1; r1 += 4;
LDRB r0, [r1, #-8]! ; r1 -= 8; r0 = *(char*)r1;
LDRD r2, [r1] ; r2 =* (int*)r1; 

    r3 =* (int*)(r1+4);
LDRSB r0, [r2, #55] ; r0 = *(signed char*) 

    (r2+55);
LDRCC pc, [pc, r0, LSL #2] ; if (C==0) goto *(pc+4*r0);
LDRB r0, [r1], -r2, LSL #8 ; r0 = *(char*)r1; 

    r1 -= 256*r2;
LDR r0, =0x12345678 ; r0 = 0x12345678; 

LSL Logical shift left for Thumb (see MOV for the ARM equivalent)

1. LSL Ld, Lm, #<immed5>    THUMBv1 
2. LSL Ld, Ls    THUMBv1  

Action Effect on the cpsr

1. Ld = Lm LSL #<immed5> Updated (see Note below) 
2. Ld = Ld LSL Ls[7:0] Updated 

Note  

The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> 
(see Table B1.3). 

LSR Logical shift right for Thumb (see MOV for the ARM equivalent)

1. LSR Ld, Lm, #<immed5>    THUMBv1 
2. LSR Ld, Ls    THUMBv1 

Action Effect on the cpsr 

1. Ld = Lm LSR #<immed5> Updated (see Note below) 
2. Ld = Ld LSR Ls[7:0] Updated 

■

■

■

■

■



Note

The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table B1.3). 

MCR Move to coprocessor from an ARM register
MCRR

1. MCR<cond> <copro>, <op1>, Rd, Cn, Cm {, <op2>} ARMv2
2. MCR2 <copro>, <op1>, Rd, Cn, Cm {, <op2>} ARMv5
3. MCRR<cond> <copro>, <op1>, Rd, Rn, Cm ARMv5E
4. MCRR2 <copro>, <op1>, Rd, Rn, Cm ARMv6

These instructions transfer the value of ARM register Rd to the indicated coprocessor. 
Formats 3 and 4 also transfer a second register Rn. <copro> is the number of the 
coprocessor in the range p0 to p15. The core takes an undefi ned instruction trap if the 
coprocessor is not present. The coprocessor operation specifi ers <op1> and <op2>, 
and the coprocessor register numbers Cn, Cm, are interpreted by the coprocessor, and 
ignored by the ARM. Rd and Rn must not be pc. Coprocessor p15 controls memory 
management options. For example, the following code sequence enables alignment 
fault checking:

MRC p15, 0, r0, c1, c0, 0 ; read the MMU register, c1
ORR r0, r0, #2 ; set the A bit
MCR p15, 0, r0, c1, c0, 0 ; write the MMU register, c1 

MLA Multiply with accumulate

1. MLA<cond>{S} Rd, Rm, Rs, Rn ARMv2 

Action          Effect on the cpsr

1. Rd = Rn + Rm*Rs     Updated if S suffi x supplied

Notes

Rd is set to the lower 32 bits of the result.

Rd, Rm, Rs, Rn must not be pc.

Rd and Rm must be different registers.

Implementations may terminate early on the value of the Rs operand. For this 
reason use small or constant values for Rs where possible. See Appendix B3.

If the cpsr is updated, then N = <Negative>, Z = <Zero>, C is unpredictable, and 
V is preserved. Avoid using the instruction MLAS because implementations often 

■

■

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-23



B1-24 Appendix B1 ARM and Thumb Assembler Instructions

impose penalty cycles for this operation. Instead use MLA followed by a compare, 
and schedule the compare to avoid multiply result use interlocks. 

MOV Move a 32-bit value into a register

1. MOV<cond>{S} Rd, #<rotated_immed> ARMv1
2. MOV<cond>{S} Rd, Rm {, <shift>} ARMv1
3. MOV Ld, #<immed8> THUMBv1 
4. MOV Ld, Ln THUMBv1 
5. MOV Hd, Lm THUMBv1 
6. MOV Ld, Hm THUMBv1 
7. MOV Hd, Hm THUMBv1 

Action Effect on the cpsr

1. Rd = <rotated_immed> Updated if S suffi x specifi ed 
2. Rd = <shifted_Rm> Updated if S suffi x specifi ed 
3. Ld = <immed8> Updated (see Notes below) 
4. Ld = Ln Updated (see Notes below) 
5. Hd = Lm Preserved 
6. Ld = Hm Preserved 
7. Hd = Hm Preserved 

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, 
Z = <Zero>, C = <shifter_C > (see Table B1.3), and V is preserved. 

If Rd or Hd is pc, then the instruction effects a jump to the calculated address. 
If the operation updates the cpsr, then the processor mode must have an spsr; in 
this case, the cpsr is set to the value of the spsr. 

If Rm is pc, then the value used is the address of the instruction plus eight bytes. 

If Hm is pc, then the value used is the address of the instruction plus four bytes. 

Examples

MOV r0, #0x00ff0000 ; r0 = 0x00ff0000
MOV r0, r1, LSL#2 ; r0 = 4*r1
MOV pc, lr ; return from subroutine (pc=lr)
MOVS pc, lr ; return from exception (pc=lr, cpsr=spsr) 

MRC Move to ARM register from a coprocessor
MRRC 

1. MRC<cond> <copro>, <op1>, Rd, Cn, Cm , <op2> ARMv2
2. MRC2 <copro>, <op1>, Rd, Cn, Cm , <op2> ARMv5 
3. MRRC<cond> <copro>, <op1>, Rd, Rn, Cm ARMv5E 
4. MRRC2 <copro>, <op1>, Rd, Rn, Cm ARMv6

■

■

■

■



These instructions transfer a 32-bit value from the indicated coprocessor to the ARM 
register Rd. Formats 3 and 4 also transfer a second 32-bit value to Rn. <copro> is 
the number of the coprocessor in the range p0 to p15. The core takes an undefi ned 
instruction trap if the coprocessor is not present. The coprocessor operation specifi ers 
<op1> and <op2>, and the coprocessor register numbers Cn, Cm, are interpreted by 
the coprocessor and ignored by the ARM. For formats 1 and 2, if Rd is pc, then the top 
four bits of the cpsr (the NZCV condition code fl ags) are set from the top four bits of 
the 32-bit value transferred; pc is not affected. For other formats, Rd and Rn must be 
distinct and not pc.

Coprocessor p15 controls memory management options. For example, the 
following instruction reads the main ID register from p15:

MRC p15, 0, r0, c0, c0 ; read the MMU ID register, c0

MRS Move to ARM register from status register ( cpsr or spsr )

 1. MRS<cond> Rd, cpsr ARMv3
 2. MRS<cond> Rd, spsr ARMv3

These instructions set Rd = cpsr and Rd = spsr, respectively. Rd must not be pc.

MSR Move to status register ( cpsr or spsr ) from an ARM register

 1. MSR<cond> cpsr_<fi elds>, #<rotated_immed> ARMv3 
 2. MSR<cond> cpsr_<fi elds>, Rm ARMv3
 3. MSR<cond> spsr_<fi elds>, #<rotated_immed> ARMv3 
 4. MSR<cond> spsr_<fi elds>, Rm ARMv3 

Action 

 1. cpsr = (cpsr & ~<mask>) | (<rotated_immed> & <mask>) 
 2. cpsr = (cpsr & ~<mask>) | (Rm & <mask>) 
 3. spsr = (spsr & ~<mask>) | (<rotated_immed> & <mask>) 
 4. spsr = (spsr & ~<mask>) | (Rm & <mask>)  

These instructions alter selected bytes of the cpsr or spsr according to the value of 
<mask>. The <fi elds> specifi er is a sequence of one or more letters, determining which 
bytes of <mask> are set. See Table B1.9.

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-25

TABLE B1.9 Format of the <fi elds> specifi er.

<fi elds> letter Meaning Bits set in <mask>

c   Control byte 0x000000ff

x   eXtension byte 0x0000ff00

s   Status byte 0x00ff0000

f   Flags byte 0xff000000



B1-26 Appendix B1 ARM and Thumb Assembler Instructions

Some old ARM toolkits allowed cpsr or cpsr_all in place of cpsr_fsxc. They also used 
cpsr_fl g and cpsr_ctl in place of cpsr_f and cpsr_c, respectively. These formats, and the spsr 
equivalents, are obsolete, so you should not use them. The following example changes to 
system mode and enables IRQ, which is useful in a reentrant interrupt handler:

MRS r0, cpsr ; read cpsr state
BIC r0, r0, #0x9f ; clear IRQ disable and mode bits
ORR r0, r0, #0x1f ; set system mode
MSR cpsr_c, r0 ; update control byte of the cpsr 

MUL Multiply

1. MUL<cond>{S} Rd, Rm, Rs ARMv2 
2. MUL Ld, Lm THUMBv1 

Action Effect on the cpsr 

1. Rd = Rm*Rs Updated if S suffi x supplied
2. Ld = Lm*Ld Updated 

Notes

Rd or Ld is set to the lower 32 bits of the result.

Rd, Rm, Rs must not be pc.

Rd and Rm must be different registers. Similarly Ld and Lm must be different. 

Implementations may terminate early on the value of the Rs or Ld operand. For 
this reason use small or constant values for Rs or Ld where possible.

If the cpsr is updated, then N = <Negative>, Z = <Zero>, C is 
unpredictable, and V is preserved. Avoid using the instruction MULS because 
implementations often impose penalty cycles for this operation. Instead use 
MUL followed by a compare, and schedule the compare, to avoid multiply 
result use interlocks. 

MVN Move the logical not of a 32-bit value into a register

1. MVN<cond>{S} Rd, #<rotated_immed> ARMv1 
2. MVN<cond>{S} Rd, Rm {, <shift>} ARMv1 
3. MVN Ld, Lm THUMBv1 

Action Effect on the cpsr 

1. Rd = ~<rotated_immed> Updated if S suffi x specifi ed
2. Rd = ~<shifted_Rm> Updated if S suffi x specifi ed
3. Ld = ~ Lm Updated (see Notes below) 

■

■

■

■

■



Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, 
Z = <Zero>, C = <shifter_C> (see Table B1.3), and V is preserved. 

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr; in this 
case, the cpsr is set to the value of the spsr. 

If Rm is pc, then the value used is the address of the instruction plus eight bytes. 

Examples

MVN r0, #0xff ; r0 = 0xffffff00
MVN r0, #0 ; r0 = -1 

NEG Negate value in Thumb (use RSB to negate in ARM state)

1. NEG Ld, Lm THUMBv1 

Action Effect on the cpsr

1. Ld = -Lm Updated (see Notes below) 

Notes

The cpsr is updated: N = <Negative>, Z = <Zero>, C = <NoUnsignedOverfl ow>, 
V = <SignedOverfl ow>. Note that Z = C and V = (Ld== 0x80000000). 

This is the same as the operation RSBS Ld, Lm, #0 in ARM state. 

NOP No operation

1. NOP MACRO

This is not an ARM instruction. It is an assembly macro that produces an instruction 
having no effect other than advancing the pc as normal. In ARM state it assembles 
to MOV r0, r0. In Thumb state it assembles to MOV r8, r8. The operation is not 
guaranteed to take one processor cycle. In particular, if you use NOP after a load of r0, 
then the operation may cause pipeline interlocks.

ORR Logical bitwise OR of two 32-bit values

1. ORR<cond>{S} Rd, Rn, #<rotated_immed> ARMv1
2. ORR<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1
3. ORR Ld, Lm THUMBv1 

Action Effect on the cpsr 

 1. Rd = Rn | <rotated_immed> Updated if S suffi x specifi ed
 2. Rd = Rn | <shifted_Rm> Updated if S suffi x specifi ed
 3. Ld = Ld | Lm Updated (see Notes below) 

■

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-27



B1-28 Appendix B1 ARM and Thumb Assembler Instructions

Notes  

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, 
Z = <Zero>, C = <shifter_C> (see Table B1.3), and V is preserved. 

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr, in this 
case, the cpsr is set to the value of the spsr. 

If Rn or Rm is pc, then the value used is the address of the instruction plus eight 
bytes. 

Example

ORR r0, r0,#1 ‹‹1 ; set bit 13 of r0 

PKH Pack 16-bit halfwords into a 32-bit word 

1. PKHBT<cond> Rd, Rn, Rm {, LSL #<0-31>} ARMv6
2. PKHTB<cond> Rd, Rn, Rm {, ASR #<1-32>} ARMv6 

Action

1. Rd[15:00] = Rn[15:00]; Rd[31:16]=<shifted_Rm>[31:16] 
2. Rd[31:16] = Rn[31:16]; Rd[15:00]=<shifted_Rm>[15:00] 

Note

Rd, Rn, Rm must not be pc. cpsr is not affected. 

Examples

PKHBT r0, r1, r2, LSL#16 ; r0 = (r2[15:00]‹‹16) | r1[15:00]
PKHTB r0, r2, r1, ASR#16 ; r0 = (r2[31:15]‹‹16) | r1[31:15] 

PLD Preload hint instruction 

1. PLD [Rn {, #{-}<immed12>}] ARMv5E 
2. PLD [Rn, {-}Rm {,<imm_shift>}] ARMv5E 

Action

1. Preloads from address (Rn + {{-}<immed12>})
2. Preloads from address (Rn + {-}<shifted_Rm>)

This instruction does not affect the processor registers (other than advancing pc). It 
merely hints that the programmer is likely to read from the given address in future. A 
cached processor may take this as a hint to load the cache line containing the address 
into the cache. The instruction should not generate a data abort or any other memory 

■

■

■

■



system error. If Rn is pc, then the value used for Rn is the address of the instruction plus 
eight. Rm must not be pc.

Examples

PLD [r0, #7] ; Preload from r0+7
PLD [r0, r1, LSL#2] ; Preload from r0+4*r1 

POP Pops multiple registers from the stack in Thumb state (for ARM state use LDM) 

1. POP <regster_list> THUMBv1

Action

1. equivalent to the ARM instruction LDMFD sp!, <register_list>

The <register_list> can contain registers in the range r0 to r7 and pc. The following 
example restores the low-numbered ARM registers and returns from a subroutine:

POP {r0-r7,pc} 

PUSH Pushes multiple registers to the stack in Thumb state (for ARM state use STM) 

1. PUSH <regster_list> THUMBv1

Action

1. equivalent to the ARM instruction STMFD sp!, <register_list>

The <register_list> can contain registers in the range r0 to r7 and lr. The 
following example saves the low-numbered ARM registers and link register.

PUSH {r0-r7,lr} 

QADD      Saturated signed and unsigned arithmetic
QDADD
QDSUB 1. QADD<cond> Rd, Rm, Rn ARMv5E
QSUB

 2. QDADD<cond> Rd, Rm, Rn ARMv5E
 3. QSUB<cond> Rd, Rm, Rn ARMv5E
 4. QDSUB<cond> Rd, Rm, Rn ARMv5E
 5. {U}QADD16<cond> Rd, Rn, Rm ARMv6
 6. {U}QADDSUBX<cond> Rd, Rn, Rm ARMv6
 7. {U}QSUBADDX<cond> Rd, Rn, Rm ARMv6
 8. {U}QSUB16<cond> Rd, Rn, Rm ARMv6
 9. {U}QADD8<cond> Rd, Rn, Rm ARMv6
10. {U}QSUB8<cond> Rd, Rn, Rm ARMv6 

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-29



B1-30 Appendix B1 ARM and Thumb Assembler Instructions

Action 

 1. Rd = sat32(Rm+Rn)
 2. Rd = sat32(Rm+sat32(2*Rn))
 3. Rd = sat32(Rm-Rn)
 4. Rd = sat32(Rm-sat32(2*Rn))
 5. Rd[31:16] = sat16(Rn[31:16] + Rm[31:16]); 
 Rd[15:00] = sat16(Rn[15:00] + Rm[15:00]) 
 6. Rd[31:16] = sat16(Rn[31:16] + Rm[15:00]); 
 Rd[15:00] = sat16(Rn[15:00] - Rm[31:16]) 
 7. Rd[31:16] = sat16(Rn[31:16] - Rm[15:00]); 
 Rd[15:00] = sat16(Rn[15:00] + Rm[31:16]) 
 8. Rd[31:16] = sat16(Rn[31:16] - Rm[31:16]); 
 Rd[15:00] = sat16(Rn[15:00] - Rm[15:00]) 
 9. Rd[31:24] = sat8(Rn[31:24]  + Rm[31:24]); 
 Rd[23:16] = sat8(Rn[23:16]  + Rm[23:16]); 
 Rd[15:08] = sat8(Rn[15:08]  + Rm[15:08]); 
 Rd[07:00] = sat8(Rn[07:00]  + Rm[07:00]) 
10. Rd[31:24] = sat8(Rn[31:24]  - Rm[31:24]); 
 Rd[23:16] = sat8(Rn[23:16]  - Rm[23:16]); 
 Rd[15:08] = sat8(Rn[15:08]  - Rm[15:08]); 
 Rd[07:00] = sat8(Rn[07:00]  - Rm[07:00])  

Notes

The operations are signed unless the U prefi x is present. For signed operations, 
satN(x) saturates x to the range –2N–1 � x < 2 N–1. For unsigned operations, 
satN(x) saturates x to the range 0 � x < 2 N.

The cpsr Q-fl ag is set if saturation occurred; otherwise it is preserved.

Rd, Rn, Rm must not be pc.

The X operations are useful for packed complex numbers. The following examples 
assume bits [15:00] hold the real part and [31:16] the imaginary part. 

Examples

QDADD r0, r0, r2 ; add Q30 value r2 to Q31 accumulator r0
QADD16 r0, r1, r2 ; SIMD saturating add
QADDSUBX r0, r1, r2 ; r0=r1+i*r2 in packed complex arithmetic
QSUBADDX r0, r1, r2 ; r0=r1-i*r2 in packed complex arithmetic 

REV Reverse bytes within a word or halfword.

1. REV<cond> Rd, Rm ARMv6/THUMBv3
2. REV16<cond> Rd, Rm ARMv6/THUMBv3
3. REVSH<cond> Rd, Rm ARMv6/THUMBv3

■

■

■

■



Action

1. Rd[31:24] = Rm[07:00]; Rd[23:16] = Rm[15:08]; 
      Rd[15:08] = Rm[23:16]; Rd[07:00] = Rm[31:24] 
2. Rd[31:24] = Rm[23:16]; Rd[23:16] = Rm[31:24]; 
      Rd[15:08] = Rm[07:00]; Rd[07:00] = Rm[15:08] 
3. Rd[31:08] = sign-extend(Rm[07:00]); Rd[07:00] = Rm[15:08] 

Notes

Rd and Rm must not be pc. 

For Thumb, Rd, Rm must be in the range r0 to r7 and <cond> cannot be 
specifi ed. 

These instructions are useful to convert big-endian data to little-endian and vice 
versa. 

Examples

REV r0, r0 ; switch endianness of a word
REV16 r0, r0 ; switch endianness of two packed halfwords
REVSH r0, r0 ; switch endianness of a signed halfword 

RFE Return from exception 

1. RFE<amode> Rn! ARMv6

This performs the operation that LDM<amode> Rn{!}, {pc, cpsr} would perform 
if LDM allowed a register list of {pc, cpsr}. See the entry for LDM.

ROR Rotate right for Thumb (see MOV for the ARM equivalent)

1. ROR Ld, Ls THUMBv1 

Action Effect on the cpsr 

1. Ld = Ld ROR Ls[7:0] Updated 

Notes

The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table B1.3). 

RSB Reverse subtract of two 32-bit integers 

1. RSB<cond>{S} Rd, Rn, #<rotated_immed> ARMv1
2. RSB<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1 

Action Effect on the cpsr 

1. Rd = <rotwated_immed> - Rn Updated if S suffi x present
2. Rd = <shifted_Rm> - Rn Updated if S suffi x present 

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-31



B1-32 Appendix B1 ARM and Thumb Assembler Instructions

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = <Zero>, 
C = <NoUnsignedOverfl ow>, and V = <SignedOverfl ow>. The carry fl ag is set this 
way because the subtract x – y is implemented as the add x + ~ y + 1. The carry fl ag is 
one if x + ~ y + 1 overfl ows. This happens when x � y, when x – y doesn’t overfl ow. 

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr in this 
case, the cpsr is set to the value of the spsr. 

If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

Examples

RSB r0, r0, #0 ; r0 = -r0
RSB r0, r1, r1, LSL#3 ; r0 = 7*r1 

RSC Reverse subtract with carry of two 32-bit integers

1. RSC<cond>{S} Rd, Rn, #<rotated_immed> ARMv1
2. RSC<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1 

Action     Effect on the cpsr

1. Rd = <rotated_immed> - Rn - (~C)    Updated if S suffi x present
2. Rd = <shifted_Rm> - Rn - (~C) Updated if S suffi x present  

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = 
<Zero>, C = <NoUnsignedOverfl ow>, V = <SignedOverfl ow>. The carry fl ag 
is set this way because the subtract x – y – ~C is implemented as the add x + 
~y + C. The carry fl ag is one if x + ~y + C overfl ows. This happens when 
x –y – ~ C doesn’t overfl ow.

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr; in this 
case the cpsr is set to the value of the spsr.

If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

The following example negates a 64-bit integer where r0 is the low 32 bits and r1 
the high 32 bits.

RSBS r0, r0, #0 ; r0 = -r0 C=NOT(borrow)
RSC r1, r1, #0 ; r1 = -r1-borrow 

SADD Parallel modulo add and subtract operations
 1. {S|U}ADD16<cond> Rd, Rn, Rm ARMv6
 2. {S|U}ADDSUBX<cond> Rd, Rn, Rm ARMv6

■

■

■

■

■

■



 3. {S|U}SUBADDX<cond> Rd, Rn, Rm ARMv6
 4. {S|U}SUB16<cond> Rd, Rn, Rm ARMv6
 5. {S|U}ADD8<cond> Rd, Rn, Rm ARMv6
 6. {S|U}SUB8<cond> Rd, Rn, Rm ARMv6 

Action Effect on the cpsr 

1. Rd[31:16] = Rn[31:16] + Rm[31:16]; GE3 = GE2 = cmn(Rn[31:16],Rm[31:16])
 Rd[15:00] = Rn[15:00] + Rm[15:00] GE1 = GE0 = cmn(Rn[15:00],Rm[15:00])
2. Rd[31:16] = Rn[31:16] + Rm[15:00]; GE3 = GE2 = cmn(Rn[31:16],Rm[15:00])
 Rd[15:00] = Rn[15:00]-Rm[31:16] GE1= GE0 =(Rn[15:00] >= Rm[31:16])
3. Rd[31:16] = Rn[31:16]-Rm[15:00]; GE3 = GE2 =(Rn[31:16] >= Rm[15:00])
 Rd[15:00] = Rn[15:00] + Rm[31:16] GE1 = GE0 =cmn(Rn[15:00],Rm[31:16])
4. Rd[31:16] = Rn[31:16]-Rm[31:16]; GE3 = GE2 =(Rn[31:16] >= Rm[31:16])
 Rd[15:00] = Rn[15:00]-Rm[15:00] GE1= GE0 =(Rn[15:00] >= Rm[15:00])
5. Rd[31:24] = Rn[31:24] + Rm[31:24]; GE3 = cmn(Rn[31:24],Rm[31:24])
 Rd[23:16] = Rn[23:16] + Rm[23:16]; GE2 = cmn(Rn[23:16],Rm[23:16])
 Rd[15:08] = Rn[15:08] + Rm[15:08]; GE1 = cmn(Rn[15:08],Rm[15:08])
 Rd[07:00] = Rn[07:00] + Rm[07:00] GE0 = cmn(Rn[07:00],Rm[07:00])
6. Rd[31:24] = Rn[31:24]-Rm[31:24]; GE3 = (Rn[31:24] >= Rm[31:24])
 Rd[23:16] = Rn[23:16]-Rm[23:16]; GE2 = (Rn[23:16] >= Rm[23:16])
 Rd[15:08] = Rn[15:08]-Rm[15:08]; GE1 = (Rn[15:08] >= Rm[15:08])
 Rd[07:00] = Rn[07:00]-Rm[07:00] GE0 = (Rn[07:00] >= Rm[07:00])

Notes

If you specify the S prefi x, then all comparisons are signed. The cmn(x, y) 
function returns x � – y or equivalently x + y � 0.

If you specify the U prefi x, then all comparisons are unsigned. The cmn(x, y) 
function returns x � (unasigned) (–y) or equivalently if the x + y operation 
produces a carry.  

Rd, Rn, and Rm must not be pc. 

The X operations are useful for packed complex numbers. The following 
examples assume bits [15:00] hold the real part and [31:16] the imaginary part. 

Examples

SADD16 r0, r1, r2 ; Signed 16-bit SIMD add
SADDSUBX r0, r1, r2 ; r0=r1+i*r2 in packed complex arithmetic

SSUBADDX r0, r1, r2 ; r0=r1-i*r2 in packed complex arithmetic 

SBC Subtract with carry

1. SBC<cond>{S} Rd, Rn, #<rotated_immed> ARMv1
2. SBC<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1
3. SBC             Ld, Lm THUMBv1  

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-33



B1-34 Appendix B1 ARM and Thumb Assembler Instructions

Action Effect on the cpsr 

1. Rd = Rn - <rotated_immed> - (~C) Updated if S suffi x specifi ed
2. Rd = Rn - <shifted_Rm> - (~C) Updated if S suffi x specifi ed
3. Ld = Ld - Lm - (~C) Updated (see Notes below)

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z = 
<Zero>, C = <NoUnsignedOverfl ow>, V = <SignedOverfl ow>. The carry fl ag is 
set this way because the subtract x – y – ~C is implemented as the add x + ~y + 
C. The carry fl ag is one if x + ~y + C overfl ows. This happens when x – y – ~C 
doesn’t overfl ow. 

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr. In this 
case the cpsr is set to the value of the spsr. 

If Rn or Rm is pc, then the value used is the address of the instruction plus eight 
bytes. 

The following example implements a 64-bit subtract:
SUBS r0, r0, r2 ; subtract low words, C=NOT(borrow)
SBC r1, r1, r3 ; subtract high words and borrow 

SEL Select between two source operands based on the GE fl ags

1. SEL<cond> Rd, Rn, Rm ARMv6 

Action 

1. Rd[31:24] = GE3 ? Rn[31:24] : Rm[31:24]; 
 Rd[23:16] = GE2 ? Rn[23:16] : Rm[23:16]; 
 Rd[15:08] = GE1 ? Rn[15:08] : Rm[15:08]; 
 Rd[07:00] = GE0 ? Rn[07:00] : Rm[07:00]

Notes

Rd, Rn, Rm must not be pc. 

See SADD for instructions that set the GE fl ags in the cpsr. 

SETEND Set the endianness for data accesses

1. SETEND BE ARMv6/THUMBv3
2. SETEND LE ARMv6/THUMBv3 

Action

1. In the cpsr E=1 so data accesses will be big-endian 
2. In the cpsr E=0 so data accesses will be little-endian

■

■

■

■

■



Note

ARMv6 uses a byte-invariant endianness model. This means that byte loads 
and stores are not affected by the confi gured endianess. For little-endian data 
access the byte at the lowest address appears in the least signifi cant byte of 
the loaded word. For big-endian data accesses the byte at the lowest address 
appears in the most signifi cant byte of the loaded word. 

SHADD Parallel halving add and subtract operations

1. {S|U}HADD16<cond> Rd, Rn, Rm ARMv6
2. {S|U}HADDSUBX<cond> Rd, Rn, Rm ARMv6
3. {S|U}HSUBADDX<cond> Rd, Rn, Rm ARMv6 
4. {S|U}HSUB16<cond> Rd, Rn, Rm ARMv6 
5. {S|U}HADD8<cond> Rd, Rn, Rm ARMv6 
6. {S|U}HSUB8<cond> Rd, Rn, Rm ARMv6 

Action

1. Rd[31:16] = (Rn[31:16] + Rm[31:16])››1;
 Rd[15:00] = (Rn[15:00] + Rm[15:00])››1
2. Rd[31:16] = (Rn[31:16] + Rm[15:00])››1;
 Rd[15:00] = (Rn[15:00] - Rm[31:16])››1
3. Rd[31:16] = (Rn[31:16] - Rm[15:00])››1;
 Rd[15:00] = (Rn[15:00] + Rm[31:16])››1
4. Rd[31:16] = (Rn[31:16] - Rm[31:16])››1;
 Rd[15:00] = (Rn[15:00] - Rm[15:00])››1
5. Rd[31:24] = (Rn[31:24] + Rm[31:24])››1;
 Rd[23:16] = (Rn[23:16] + Rm[23:16])››1;
 Rd[15:08] = (Rn[15:08] + Rm[15:08])››1;
 Rd[07:00] = (Rn[07:00] + Rm[07:00])››1
6. Rd[31:24] = (Rn[31:24] - Rm[31:24])››1;
 Rd[23:16] = (Rn[23:16] - Rm[23:16])››1;
 Rd[15:08] = (Rn[15:08] - Rm[15:08])››1;
 Rd[07:00] = (Rn[07:00] - Rm[07:00])››1

Notes

If you use the S prefi x, then all operations are signed and values are 
sign-extended before the addition. 

If you use the U prefi x, then all operations are unsigned and values are 
zero-extended before the addition.  

Rd, Rn, and Rm must not be pc. 

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-35



B1-36 Appendix B1 ARM and Thumb Assembler Instructions

These operations provide parallel arithmetic that cannot overfl ow, which is 
useful for DSP processing of normalized signals. 

SMLS Signed multiply accumulate instructions
SMLA

1. SMLA<x><y><cond> Rd, Rm, Rs, Rn ARMv5E
2. SMLAW<y><cond> Rd, Rm, Rs, Rn ARMv5E
3. SMLAD{X}<cond> Rd, Rm, Rs, Rn ARMv6
4. SMLSD{X}<cond> Rd, Rm, Rs, Rn ARMv6
5. {U|S}MLAL<cond>{S} RdLo, RdHi, Rm, Rs ARMv3M
6. SMLAL<x><y><cond> RdLo, RdHi, Rm, Rs ARMv5E
7. SMLALD{X}<cond> RdLo, RdHi, Rm, Rs ARMv6
8. SMLSLD{X}<cond> RdLo, RdHi, Rm, Rs ARMv6 

Action

1. Rd = Rn + (Rm.<x> * Rs.<y>)
2. Rd = Rn + (((signed)Rm * Rs.<y>)››16)
3. Rd = Rn + Rm.B*<rotated_Rs>.B + Rm.T*<rotated_Rs>.T
4. Rd = Rn + Rm.B*<rotated_Rs>.B - Rm.T*<rotated_Rs>.T
5. RdHi:RdLo = RdHi:RdLo + (Rm * Rs)
6. RdHi:RdLo = RdHi:RdLo + (Rm.<x> * Rm.<y>)
7. RdHi:RdLo = RdHi:RdLo + Rm.B*<rotated_Rs>.B + Rm.T*<rotated_Rs>.T
8. RdHi:RdLo = RdHi:RdLo + Rm.B*<rotated_Rs>.B - Rm.T*<rotated_Rs>.T

Notes

<x> and <y> can be B or T.

Rm.B is shorthand for (sign-extend)Rm[15:00], the bottom 16 bits of Rm. 

Rm.T is shorthand for (sign-extend)Rm[31:16], the top 16 bits of Rm.

<rotated_Rs> is Rs if you do not specify the X suffi x or Rs ROR 16 if you do 
specify the X suffi x.

RdHi and RdLo must be different registers. For format 5, Rm must be a 
different register from RdHi and RdLo.

Formats 1 to 4 update the cpsr Q-fl ag: Q = Q < SignedOverfl ow>.

Format 5 implements an unsigned multiply with the U prefi x or a signed 
multiply with the S prefi x.

Format 5 updates the cpsr if the S suffi x is present: N = RdHi[31], Z = ( RdHi==0 
&& RdLo==0); the C and V fl ags are unpredictable. Avoid using {U|S}MLALS 
because implementations often impose penalty cycles for this operation.

Implementations may terminate early on the value of Rs. For this reason use 
small or constant values for Rs where possible.

■

■

■

■

■

■

■

■

■

■



The X suffi x and multiply subtract versions are useful for packed complex 
numbers. The following examples assume bits [15:00] hold the real part and 
[31:16] the imaginary part. 

Examples

SMLABB r0, r1, r2, r0 ; r0  += (short)r1 * (short)r2
SMLABT r0, r1, r2, r0  ; r0  += (short)r1 * ((signed)r››216)
SMLAWB r0, r1, r2, r0  ; r0  += (r1*(short)r2)››16
SMLAL r0, r1, r2, r3  ; acc += r2*r3, acc is 64 bits [r1:r0]
SMLALTB r0, r1, r2, r3  ; acc += ((signed)r2››16)*((short)r3)
SMLSD r0, r1, r2, r0  ; r0  += real(r1*r2) in complex maths
SMLADX r0, r1, r2, r0  ; r0  += imag(r1*r2) in complex maths

SMMUL Signed most signifi cant word multiply instructions
SMMLA
SMMLS 1. SMMUL{R}<cond> Rd, Rm, Rs  ARMv6

2. SMMLA{R}<cond> Rd, Rm, Rs, Rn ARMv6
3. SMMLS{R}<cond> Rd, Rm, Rs, Rn ARMv6

Action

1. Rd = ((signed)Rm*(signed)Rs + round)››32
2. Rd = ((Rn ‹‹ 32) + (signed)Rm*(signed)Rs + round)››32
3. Rd = ((Rn ‹‹ 32) - (signed)Rm*(signed)Rs + round)››32

Notes

If you specify the R suffi x then round = 231; otherwise, round = 0.

Rd, Rm, Rs, and Rn must not be pc.

Implementations may terminate early on the value of Rs. 

For 32-bit DSP algorithms these operations have several advantages over 
using the high result register from SMLAL: They often take fewer cycles than 
SMLAL. They also implement rounding, multiply subtract, and don’t require 
a temporary scratch register for the low 32 bits of result. 

Example

SMMULR  r0, r1, r2    ; r0=r1*r2/2 using Q31 arithmetic 

SMUL   Signed multiply instructions
SMUA
SMUS    1. SMUL<x><y><cond> Rd, Rm, Rs  ARMv5E
    2. SMULW<y><cond> Rd, Rm, Rs  ARMv5E
    3. SMUAD{X}<cond> Rd, Rm, Rs  ARMv6

■

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-37



B1-38 Appendix B1 ARM and Thumb Assembler Instructions

 4. SMUSD{X}<cond> Rd, Rm, Rs  ARMv6
 5. {U|S}MULL<cond>{S} RdLo, RdHi, Rm, Rs ARMv3M

Action

1. Rd = Rm.<x> * Rs.<y>
2. Rd = (Rm * Rs.<y>)››16
3. Rd = Rm.B*<rotated_Rs>.B + Rm.T*<rotated_Rs>.T
4. Rd = Rm.B*<rotated_Rs>.B - Rm.T*<rotated_Rs>.T
5. RdHi:RdLo = Rm*Rs  

Notes

<x> and <y> can be B or T.

Rm.B is shorthand for (sign-extend)Rm[15:00], the bottom 16 bits of Rm.

Rm.T is shorthand for (sign-extend)Rm[31:16], the top 16 bits of Rm.

<rotated_Rs> is Rs if you do not specify the X suffi x or Rs ROR 16 if you do 
specify the X suffi x.

RdHi and RdLo must be different registers. For format 5, Rm must be a 
different register from RdHi and RdLo.

Format 4 updates the cpsr Q-fl ag: Q = Q | <SignedOverfl ow>. 

Format 5 implements an unsigned multiply with the U prefi x or a signed 
multiply with the S prefi x. 

Format 5 updates the cpsr if the S suffi x is present: N = RdHi[31], Z = ( RdHi==0 
&& RdLo==0); the C and V fl ags are unpredictable. Avoid using {S|U}MULLS 
because implementations often impose penalty cycles for this operation.

Implementations may terminate early on the value of Rs. For this reason use 
small or constant values for Rs where possible.

The X suffi x and multiply subtract versions are useful for packed complex 
numbers. The following examples assume bits [15:00] hold the real part and 
[31:16] the imaginary part. 

Examples

SMULBB r0, r1, r2 ; r0     = (short)r1 * (short)r2
SMULBT r0, r1, r2 ; r0     = (short)r1 * ((signed)r2››16)
SMULWB r0, r1, r2 ; r0     = (r1*(short)r2)››16
SMULL r0, r1, r2, r3 ; acc =    r2*r3, acc is 64 bits [r1:r0]
SMUADX r0, r1, r2 ; r0     = imag(r1*r2) in complex maths 

SRS Save return state

1. SRS<amode> #<mode>{!}   ARMv6

■

■

■

■

■

■

■

■

■

■



This performs the operation that STM<amode> sp_<mode>{!} , {lr, spsr} would 
perform if STM allowed a register list of {lr, spsr} and allowed you to reference the 
stack pointer of a different mode. See the entry for STM.

SSAT   Saturate to n bits

1. {S|U}SAT<cond>   Rd, #<n>, Rm {, LSL#<0-31>}
2. {S|U}SAT<cond>   Rd, #<n>, Rm {, ASR#<1-32>}
3. {S|U}SAT16<cond> Rd, #<n>, Rm  

Action Effect on the cpsr

1. Rd = sat(<shifted_Rm>, n); Q=Q | 1 if saturation occurred
2. Rd = sat(<shifted_Rm>, n); Q=Q | 1 if saturation occurred
3. Rd[31:16] = sat(Rm[31:16], n); Q=Q | 1 if saturation occurred 
 Rd[15:00] = sat(Rm[15:00], n)

Notes

If you specify the S prefi x, then sat (x, n) saturates the signed value x to a signed 
n-bit value in the range � 2n�1	 x � 2n�1. n is encoded as 1 + <immed5> for 
SAT and 1 + <immed4> for SAT16.

If you specify the U prefi x, then sat (x, n) saturates the signed value x to an 
unsigned n-bit value in the range 0 	 x 	 2n. n is encoded as <immed5> for 
SAT and <immed4> for SAT16.

Rd and Rm must not be pc. 

SSUB Signed parallel subtract (see SADD)

STC Store to coprocessor single or multiple 32-bit values

1. STC<cond>{L} <copro>, Cd, [Rn {, #{-}<immed8>*4}]{!} ARMv2
2. STC<cond>{L} <copro>, Cd, [Rn], #{-}<immed8>*4 ARMv2
3. STC<cond>{L} <copro>, Cd, [Rn], <option> ARMv2
4. STC2{L} <copro>, Cd, [Rn {, #{-}<immed8>*4}]{!} ARMv5
5. STC2{L} <copro>, Cd, [Rn], #{-}<immed8>*4 ARMv5
6. STC2{L} <copro>, Cd, [Rn], <option> ARMv5

These instructions initiate a memory write, transferring data to memory from the 
given coprocessor. <copro> is the number of the coprocessor in the range p0 to 
p15. The core takes an undefi ned instruction trap if the coprocessor is not present. 
The memory write consists of a sequence of words to sequentially increasing 
addresses. The initial address is specifi ed by the addressing mode in Table B1.10. 
The coprocessor controls the number of words transferred, up to a maximum 

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-39



B1-40 Appendix B1 ARM and Thumb Assembler Instructions

limit of 16 words. The fi elds {L} and Cd are interpreted by the coprocessor and 
ignored by the ARM. Typically Cd specifi es the source coprocessor register for the 
transfer. The <option> fi eld is an eight-bit integer enclosed in {}. Its interpretation 
is coprocessor dependent.

If the address is not a multiple of four, then the access is unaligned. The 
restrictions on an unaligned access are the same as for STM.

 Addressing format  Address accessed  Value written back to  Rn

[Rn  {, #{-}<immed>}] Rn  + {{-}<immed>} Rn  preserved

[Rn  {, #{-}<immed>}]! Rn  +  {{-}<immed>} Rn  + {{-}<immed>}

[Rn],   #{-}<immed> Rn Rn  + {-}<immed>

[Rn],   <option> Rn Rn  preserved

STM Store multiple 32-bit registers to memory

1. STM<cond><a mode> Rn{!}, <register_list>{
∧
} ARMv1

2. STMIA Rn!, <register_list> THUMBv1

These instructions store multiple words to sequential memory addresses. The <register_
list> specifi es a list of registers to store, enclosed in curly brackets {}. Although the 
assembler allows you to specify the registers in the list in any order, the order is not 
stored in the instruction, so it is good practice to write the list in increasing order of 
register number since this is the usual order of the memory transfer.

The following pseudocode shows the normal action of STM. We use <register_
list>[i] to denote the register appearing at position i in the list starting at 
0 for the fi rst register. This assumes that the list is in order of increasing register 
number.

N = the number of registers in <register_list>
start = the lowest address accessed given in Table B1.11
for (i=0; i<N; i++)
memory(start+i*4, 4) = <register_list>[i];
if (! specifi ed) then update Rn according to Table B1.11 

Note that memory(a, 4) refers to the four bytes at address a packed according 
to the current processor data endianness. If a is not a multiple of four, then the store 
is unaligned. Because the behavior of an unaligned store depends on the architecture 
revision, memory system, and system coprocessor (CP15) confi guration, it is best to 
avoid unaligned stores if possible. Assuming that the external memory system does not 
abort unaligned stores, then the following rules usually apply:

TABLE B1.10 STC addressing modes.



If the core has a system coprocessor and bit 1 ( A-bit) or bit 22 ( U-bit) of CP15:
c1:c0:0 is set, then unaligned store-multiples cause an alignment fault data abort 
exception.

Otherwise, the access ignores the bottom two address bits.

Table B1.11 lists the possible addressing modes specifi ed by <amode>. If you specify 
the !, then the base address register is updated according to Table B1.11; otherwise, 
it is preserved. Note that the lowest register number is always written to the lowest 
address.

 

 Addressing 
mode

 Lowest address 
accessed

 Highest address 
accessed

 Value written back
to Rn if ! specifi ed

{IA|EA} Rn Rn + N*4 - 4 Rn + N*4

{IB|FA} Rn + 4 Rn + N*4 Rn + N*4

{DA|ED} Rn - N*4 + 4 Rn Rn - N*4

{DB|FD} Rn - N*4 Rn - 4 Rn - N*4

 
The fi rst half of the addressing mode mnemonics stands for Increment After, 

Increment Before, Decrement After, and Decrement Before, respectively. Increment 
modes store the registers sequentially forward starting from address Rn (increment 
after) or Rn + 4 (increment before). Decrement modes have the same effect as if you 
stored the register list backwards to sequentially descending memory addresses starting 
from address Rn (decrement after) or Rn � 4 (decrement before).

The second half of the addressing mode mnemonics stands for the stack type you 
can implement with that address mode: Full Descending, Empty Descending, Full 
Ascending, and Empty Ascending. With a full stack, Rn points to the last stacked value. 
With an empty stack, Rn points to the fi rst unused stack location. ARM stacks are 
usually full descending. You should use full descending or empty ascending stacks by 
preference, since STC also supports these addressing modes.

Notes

For Thumb (format 2), Rn and the register list registers must be in the range r0 to r7.

The number of registers N in the list must be nonzero.

Rn must not be pc.

If Rn appears in the register list and ! (writeback) is specifi ed, the behavior is as 
follows: If Rn is the lowest register number in the list, then the original value is 
stored; otherwise, the stored value is unpredictable.

■

■

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-41

TABLE B1.11 STM addressing modes.



B1-42 Appendix B1 ARM and Thumb Assembler Instructions

If pc appears in the register list, then the value stored is implementation defi ned. 

If 
∧

 is specifi ed, then the operation is modifi ed. The processor must not be in 
user or system mode. The registers appearing in the register list refer to the user 
mode versions of the registers and writeback must not be specifi ed.

The time order of the memory accesses may depend on the implementation. Be 
careful when using a store multiple to access I/O locations where the access order 
matters. If the order matters, then check that the memory locations are marked 
as I/O in the page tables. Do not cross page boundaries, and do not use pc in the 
register list. 

Examples

STMIA r4!, {r0, r1} ; *r4=r0, *(r4+4)=r1, r4+=8
STMDB r4!, {r0, r1} ; *(r4-4)=r1, *(r4-8)=r0, r4-=8
STMEQFD sp!, {r0, lr} ; if (result zero) then stack r0, lr
STMFD sp, {sp} ∧  ; store sp_usr on stack sp_current 

STR Store a single value to a virtual address in memory
1. STR<cond>{|B} Rd, [Rn {, #{-}<immed12>}]{!} ARMv1
2. STR<cond>{|B} Rd, [Rn, {-}Rm {,<imm_shift>}]{!} ARMv1
3. STR<cond>{|B}{T} Rd, [Rn], #{-}<immed12> ARMv1
4. STR<cond>{|B}{T} Rd, [Rn], {-}Rm {,<imm_shift>} ARMv1
5. STR<cond>{H} Rd, [Rn, {, #{-}<immed8>}]{!} ARMv4
6. STR<cond>{H} Rd, [Rn, {-}Rm]{!} ARMv4 
7. STR<cond>{H} Rd, [Rn], #{-}<immed8> ARMv4
8. STR<cond>{H} Rd, [Rn], {-}Rm ARMv4 
9. STR<cond>D Rd, [Rn, {, #{-}<immed8>}]{!} ARMv5E
10. STR<cond>D Rd, [Rn, {-}Rm]{!} ARMv5E
11. STR<cond>D  Rd, [Rn], #{-}<immed8> ARMv5E
12. STR<cond>D Rd, [Rn], {-}Rm ARMv5E
13. STREX<cond> Rd, Rm, [Rn]  ARMv6
14. STR{|B|H} Ld, [Ln, #<immed5>*<size>] THUMBv1
15. STR{|B|H} Ld, [Ln, Lm] THUMBv1
16. STR Ld, [sp, #<immed8>*4] THUMBv1 
17. STR<cond><type> Rd, <label> MACRO

Formats 1 to 16 store a single data item of the type specifi ed by the opcode suffi x, 
using a preindexed or postindexed addressing mode. Tables B1.12 and B1.13 show the 
different addressing modes and data types.

In Table B1.13, memory (a, n) refers to n sequential bytes at address a. The bytes are 
packed according to the confi gured processor data endianness. memoryT(a, n) performs 
the access with user mode privileges, regardless of the current processor mode. The act 
of function IsExclusive(a) used by STREX depends on address a. If a has the shared 
TLB attribute, then IsExclusive(a) is true if address a is marked as exclusive for 
this processor. It then clears any exclusive accesses on this processor and any exclusive 

■

■

■



accesses to address a on other processors in the system. If a does not have the shared 
TLB attribute, then IsExclusive(a) is true if there is an outstanding exclusive access 
on this processor. It then clears any such outstanding access.

TABLE B1.12 STR addressing modes.

 Addressing format  Address a accessed  Value written back to Rn

[Rn {,#{-}<immed>}] Rn +  {{-}<immed>} Rn preserved

[Rn {,#{-}<immed>}]! Rn + {{-}<immed>} Rn + {{-}<immed>}

[Rn, {-}Rm {,<shift>}] Rn + {-}<shifted_Rm> Rn preserved

[Rn, {-}Rm {,<shift>}]! Rn + {-}<shifted_Rm> Rn + {-}<shifted_Rm>

[Rn], #{-}<immed> Rn Rn + {-}<immed>

[Rn], {-}Rm {,<shift>} Rn Rn + {-}<shifted_Rm>

TABLE B1.13 STR data types.

 Store  Datatype   <size> (bytes)  Action

STR word 4 memory(a, 4) = Rd

STRB unsigned Byte 1 memory(a, 1) = (char)Rd

STRBT Byte Translated 1 memoryT(a, 1) = (char)Rd

STRD Double word 8 memory(a, 4) = Rd

 memory(a+4, 4) = R(d+1)

STREX word EXclusive 4 if (IsExclsuive(a)) {

    memory (a, 4) = Rm;

    Rd = 0;

} else { 

     Rd = 1;

}

STRH unsigned Halfword 2 memory(a, 2) = (short) Rd

STRT word Translated 4 memoryT(a, 4) = Rd

If the address a is not a multiple of <size>, then the store is unaligned. Because the 
behavior of an unaligned store depends on the architecture revision, memory system, 
and system coprocessor (CP15) confi guration, it is best to avoid unaligned stores if 
possible. Assuming that the external memory system does not abort unaligned stores, 
then the following rules usually apply. In the rules, A is bit 1 of system coprocessor 
register CP15:c1:c0:0, and U is bit 22 of CP15:c1:c0:0, introduced in ARMv6. If there is 
no system coprocessor, then A � U � 0.

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-43



B1-44 Appendix B1 ARM and Thumb Assembler Instructions

If A = 1, then unaligned stores cause an alignment fault data abort exception 
except that word-aligned double-word stores are supported if U = 1.

If A = 0 and U = 1, then unaligned stores are supported for STR{|T|H|SH}. Word-
aligned stores are supported for STRD. A non-word-aligned STRD generates an 
alignment fault data abort.

If A = 0 and U = 0, then STR and STRT write to memory(a&~ 3, 4). All other 
unaligned operations are unpredictable but do not cause an alignment fault

Format 17 generates a pc -relative store accessing the address specifi ed by <label> . In 
other words it assembles to STR<cond><type> Rd, [pc, #<offset>] whenever this 
instruction is supported and <offset>=<label>-pc is in range.

Notes

For double-word stores (formats 9 to 12), Rd must be even and in the range r0 
to r12.

If the addressing mode updates Rn, then Rd and Rn must be distinct.

If Rd is pc, then <size> must be 4. The value stored is implementation defi ned.

If Rn is pc, then the addressing mode must not update Rn . The value used for Rn 
is the address of the instruction plus eight bytes.

Rm must not be pc. 

Examples

STR r0, [r0]       ; *(int*)r0 = r0;
STRH r0, [r1], #4   ; *(short*)r1 = r0; r1+=4;
STRD r2, [r1, #-8]! ; r1-=8; *(int*)r1=r2; *(int*)(r1+4)=r3
STRB r0, [r2, #55]         ; *(char*)(r2+55) = r0;
STRB r0, [r1], -r2, LSL #8 ; *(char*)r1 = r0; r1-=256*r2; 

SUB Subtract two 32-bit values

1. SUB<cond>{S} Rd, Rn, #<rotated_immed> ARMv1
2. SUB<cond>{S} Rd, Rn, Rm {, <shift>} ARMv1
3. SUB Ld, Ln, #<immed3> THUMBv1
4. SUB Ld, #<immed8> THUMBv1
5. SUB Ld, Ln, Lm THUMBv1
6. SUB sp, #<immed7>*4 THUMBv1

Action Effect on the  cpsr

1. Rd = Rn - <rotated_immed> Updated if S suffi x specifi ed
2. Rd = Rn - <shifted_Rm> Updated if S suffi x specifi ed
3. Ld = Ln - <immed3> Updated (see Notes below)
4. Ld = Ld - <immed8> Updated (see Notes below)

■

■

■

■

■

■

■

■



5. Ld = Ln - Lm Updated (see Notes below)
6. sp = sp - <immed7>*4 Preserved

Notes

If the operation updates the cpsr and Rd is not pc, then N = <Negative>, Z 
= <Zero>, C = <NoUnsignedOverfl ow>, and V = <SignedOverfl ow>. The 
carry fl ag is set this way because the subtract x � y is implemented as the add 
x � ~ y � 1. The carry fl ag is one if x � ~ y � 1 overfl ows. This happens when 
x � y, when x � y doesn’t overfl ow.

If Rd is pc, then the instruction effects a jump to the calculated address. If the 
operation updates the cpsr, then the processor mode must have an spsr; in this 
case, the cpsr is set to the value of the spsr.

If Rn or Rm is pc, then the value used is the address of the instruction plus eight 
bytes. 

Examples

SUBS r0, r0, #1 ; r0-=1, setting fl ags
SUB r0, r1, r1, LSL #2 ; r0 = -3*r1
SUBS pc, lr, #4 ; jump to lr-4, set cpsr=spsr 

SWI Software interrupt

1. SWI<cond> <immed24> ARMv1
2. SWI <immed8> THUMBv1

The SWI instruction causes the ARM to enter supervisor mode and start executing 
from the SWI vector. The return address and cpsr are saved in lr_svc and spsr_svc, 
respectively. The processor switches to ARM state and IRQ interrupts are disabled. The 
SWI vector is at address 0x00000008, unless high vectors are confi gured; then it is at 
address 0xFFFF0008.

The immediate operand is ignored by the ARM. It is normally used by the SWI 
exception handler as an argument determining which function to perform.

Example

 SWI   0x123456 ; Used by the ARM tools to implement Semi-Hosting

SWP   Swap a word in memory with a register, without interruption

1. SWP<cond>  Rd, Rm, [Rn] ARMv2a
2. SWP<cond>B Rd, Rm, [Rn] ARMv2a

Action

1. temp=memory(Rn,4); memory(Rn,4)=Rm; Rd=temp;
2. temp=(zero extend)memory(Rn,1); memory(Rn,1)=(char)Rm; Rd=temp;

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-45



B1-46 Appendix B1 ARM and Thumb Assembler Instructions

Notes

The operations are atomic. They cannot be interrupted partway through.

Rd, Rm, Rn must not be pc.

Rn and Rm must be different registers. Rn and Rd must be different registers. 

Rn should be aligned to the size of the memory transfer.

If a data abort occurs on the load, then the store does not occur. If a data abort 
occurs on the store, then Rd is not written.

You can use the SWP instruction to implement 8-bit or 32-bit semaphores on ARMv5 
and below. For ARMv6 use LDREX and STREX in preference. As an example, suppose 
a byte semaphore register pointed to by r1 can have the value 0xFF (claimed) or 0x00 
(free). The following example claims the lock. If the lock is already claimed, then the 
code loops, waiting for an interrupt or task switch that will free the lock.

MOV r0, #0xFF ; value to claim the lock
loops WPB r0, r0, [r1] ; try and claim the lock

CMP r0, #0xFF ; check to see if it was already claimed
BEQ loop ; if so wait for it to become free 

SXT   Byte or halfword extract or extract with accumulate
SXTA

1. {S|U}XTB16<cond> Rd, Rm {, ROR#8*<rot> } ARMv6
2. {S|U}XTB<cond> Rd, Rm {, ROR#8*<rot> } ARMv6
3. {S|U}XTH<cond> Rd, Rm {, ROR#8*<rot> } ARMv6
4. {S|U}XTAB16<cond> Rd, Rn, Rm {, ROR#8*<rot> } ARMv6
5. {S|U}XTAB<cond> Rd, Rn, Rm {, ROR#8*<rot> } ARMv6
6. {S|U}XTAH<cond> Rd, Rn, Rm {, ROR#8*<rot> } ARMv6
7. {S|U}XTB Ld, Lm THUMBv3
8. {S|U}XTH Ld, Lm THUMBv3

Action

1. Rd[31:16] = extend(<shifted_Rm>[23:16]); 
   Rd[15:00] = extend(<shifted_Rm>[07:00])
2. Rd = extend(<shifted_Rm>[07:00])
3. Rd = extend(<shifted_Rm>[15:00])
4. Rd[31:16] = Rn[31:16] + extend(<shifted_Rm>[23:16]); 
  Rd[15:00] = Rn[15:00] + extend(<shifted_Rm>[07:00])

5. Rd = Rn + extend(<shifted_Rm>[07:00])
6. Rd = Rn + extend(<shifted_Rm>[15:00])
7. Ld = extend(Lm[07:00])
8. Ld = extend(Lm[15:00])  

■

■

■

■

■



Notes

If you specify the S prefi x, then extend( x ) sign extends x.

If you specify the U prefi x, then extend( x ) zero extends x.

Rd and Rm must not be pc.

<rot> is an immediate in the range 0 to 3. 

TEQ Test for equality of two 32-bit values

1. TEQ<cond> Rn, #<rotated_immed> ARMv1
2. TEQ<cond> Rn, Rm {, <shift>} ARMv1

Action

1. Set the cpsr on the result of (Rn 
∧
 <rotated_immed>)

2. Set the cpsr on the result of (Rn 
∧
 <shifted_Rm>) 

Notes

The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table 
B1.3).

If Rn or Rm is pc, then the value used is the address of the instruction plus eight 
bytes.

Use this instruction instead of CMP when you want to check for equality and 
preserve the carry fl ag. 

Example

TEQ     r0, #1        ; test to see if r0==1 

TST Test bits of a 32-bit value

1. TST<cond> Rn, #<rotated_immed> ARMv1
2. TST<cond> Rn, Rm {, <shift>} ARMv1
3. TST       Ln, Lm THUMBv1

Action

1. Set the cpsr on the result of (Rn & <rotated_immed>)
2. Set the cpsr on the result of (Rn & <shifted_Rm>)
3. Set the cpsr on the result of (Ln & Lm)  

Notes

The cpsr is updated: N = <Negative>, Z = <Zero>, C = <shifter_C> (see Table B1.3).

If Rn or Rm is pc, then the value used is the address of the instruction plus eight bytes.

■

■

■

■

■

■

■

■

■

 B1.3 Alphabetical List of ARM and Thumb Instructions B1-47



B1-48 Appendix B1 ARM and Thumb Assembler Instructions

Use this instruction to test whether a selected set of bits are all zero. 

Example

TST r0, #0xFF ; test if the bottom 8 bits of r0 are 0 

UADD Unsigned parallel modulo add (see the entry for SADD) 

UHADD
UHSUB

Unsigned halving add and subtract (see the entry for SHADD)

UMAAL Unsigned multiply accumulate accumulate long

1. UMAAL<cond> RdLo, RdHi, Rm, Rs ARMv6

Action

1. RdHi:RdLo � (unsigned)Rm*Rs � (unsigned)RdLo � (unsigned)RdHi 

Notes

RdHi and RdLo must be different registers.

RdHi, RdLo, Rm, Rs must not be pc. 

This operation cannot overfl ow because (232 � 1) (232 � 1)�(232 � 1) �  
(232� 1) �  (264�1). You can use it to synthesize the multiword multiplications 
used by public key cryptosystems. 

UMLAL
UMULL

Unsigned long multiply and multiply accumulate (see the SMLAL and 
SMULL entries)

UQADD
UQSUB

Unsigned saturated add and subtract (see the QADD entry)

USAD Unsigned sum of absolute differences

1. USAD8<cond> Rd, Rm, Rs  ARMv6
2. USADA8<cond> Rd, Rm, Rs, Rn ARMv6

Action

1. Rd = abs(Rm[31:24]-Rs[31:24]) + abs(Rm[23:16]-Rs[23:16])
 + abs(Rm[15:08]-Rs[15:08])  + abs(Rm[07:00]-Rs[07:00])

2. Rd = Rn + abs(Rm[31:24]-Rs[31:24]) + abs(Rm[23:16]-Rs[23:16])
 + abs(Rm[15:08]-Rs[15:08]) + abs(Rm[07:00]-Rs[07:00])  

■

■

■

■



Note

abs( x ) returns the absolute value of x. Rm and Rs are treated as unsigned. 

Rd, Rm, and Rs must not be pc.

The sum of absolute differences operation is common in video codecs where it 
provides a metric to measure how similar two images are. 

USAT Unsigned saturation instruction (see the SSAT entry)

USUB Unsigned parallel modulo subtracts (see the SADD entry)

UXT
UXTA

Unsigned extract, extract with accumulate (see the entry for SXT)

 B1.4 ARM Assembler Quick Reference

This section summarizes the more useful commands and expressions available with 
the ARM assembler, armasm. Each assembly line has one of the following formats:

{<label>} {<instruction>} ; comment
{<symbol>} <directive> ; comment
{<arg_0>} <macro> {<arg_1>} {,<arg_2>} .. {,<arg_n>} ; comment 

where

<instruction> is any ARM or Thumb instruction supported by the processor 
you are assembling for. See Section B1.3.

<label> is the name of a symbol to store the address of the instruction.

<directive> is an ARM assembler directive. See Section ARM Assembler Directives.

<symbol> is the name of a symbol used by the <directive>.

<macro> is the name of a new directive defi ned using the MACRO 
directive.

<arg_k> is the kth macro argument. 

You must use an AREA directive to defi ne an area before any ARM or Thumb 
instructions appear. All assembly fi les must fi nish with the END directive. The 
following example shows a simple assembly fi le defi ning a function add that returns 
the sum of the two input arguments:

■

■

■

■

■

■

■

■

■

 B1.4 ARM Assembler Quick Reference B1-49



B1-50 Appendix B1 ARM and Thumb Assembler Instructions

AREA maths_routines, CODE, READONLY
EXPORT add           ; give the symbol add external linkage

add  ADD     r0, r0, r1   ; add input arguments
MOV     pc, lr       ; return from sub-routine

END 

ARM Assembler Variables

The ARM assembler supports three types of assemble time variables (see Table 
B1.14). Variable names are case sensitive and must be declared before use with the 
directives GBLx or LCLx.

TABLE B1.14 ARM assembler variable types.

Variable type 
 Declare 
 globally 

 Declare locally 
 to a macro  Set value 

 Example
 values

Unsigned 32-bit 
integer 

GBLA LCLA SETA 15, 0xab

ASCII string GBLS LCLS SETS “”, “ADD”

Logical GBLL LCLL SETL {TRUE}, {FALSE}

You can use variables in expressions (see Section ARM Assembler Labels), or substitute 
their value at assembly time using the $ operator. Specifi cally, $name. expands to the 
value of the variable name before the line is assembled. You can omit the fi nal period 
if name is not followed by an alphanumeric or underscore. Use $$ to produce a single 
$. Arithmetic variables expand to an eight-digit hexadecimal string on substitution. 
Logical variables expand to T or F.

The following example code shows how to declare and substitute variables of 
each type:

; arithmetic variables
GBLA count ; declare an integer variable count

count  SETA 1      ; set count = 1
  WHILE   count<15
   BL test$count    ; call test00000001, test00000002 ...

count   SETA  count+1      ;  .... test00000000E
 WEND

; string variables
GBLS   cc ; declare a string variable called cc

cc    SETS   “NE” ; set cc=”NE”
ADD$cc r0, r0, r0 ; assembles as ADDNE  r0,r0,r0
STR$cc.B r0, [r1] ; assembles as STRNEB r0,[r1]



; logical variable
GBLL     debug ; declare a logical variable called debug

debug SETL    {TRUE} ; set debug={TRUE}
IF debug ; if debug is TRUE then
  BL     print_debug ; print out some debug information
ENDIF 

ARM Assembler Labels

A label defi nition must begin on the fi rst character of a line. The assembler treats 
indented text as an instruction, directive, or macro. It treats labels of the form 
<N><name> as a local label, where <N> is an integer in the range 0 to 99 and <name> 
is an optional textual name. Local labels are limited in scope by the ROUT directive. 
To reference a local label, you refer to it as %{|F|B}{|A|T}<N>{<name>}. The 
extra prefi x letters tell the assembler how to search for the label:

If you specify F, the assembler searches forward; if B, then the assembler 
searches backwards. Otherwise the assembler searches backwards and then 
forwards.

If you specify T, the assembler searches the current macro only; if A, then 
the assembler searches all macro levels. Otherwise the assembler searches the 
current and higher macro nesting levels.

ARM Assembler Expressions

The ARM assembler can evaluate a number of numeric, string, and logical 
expressions at assembly time. Table B1.15 shows some of the unary and binary 
operators you can use within expressions. Brackets can be used to change the order 
of evaluation in the usual way. 

TABLE B1.15: ARM assembler unary and binary operators.

Expression  Result  Example

A+B, A-B A plus or minus B 1-2 = 0xffffffff

A*B, A/B A multiplied by or divided by B 2*3 = 6, 7/3 = 2

A:MOD:B A modulo B 7:MOD:3 = 1

:CHR:A string with ASCII code A :CHR:32 = “ ”

‘X’ the ASCII value of X ‘a’ = 0x61

:STR:A, :STR:L A or L converted to a string :STR:32 = “00000020” :
STR:{TRUE} = “T”

A‹‹B, A:SHL:B A shifted left by B bits 1  ‹‹  3 = 8

A››B, A:SHR:B A shifted right by B bits 
(logical shift) 

0x80000000  ››  4 = 0x08000000

A:ROR:B, A:ROL:B A rotated right/left by B bits 1:ROR:1 = 0x80000000 
0x80000000:ROL:1 = 1

■

■

 B1.4 ARM Assembler Quick Reference B1-51



B1-52 Appendix B1 ARM and Thumb Assembler Instructions

A=B, A>B, A>=B, A<B,
A<=B, A/=B, A<>B

comparison of arithmetic or 
string variables ( /= and <> both 
mean not equal) 

(1=2) = {FALSE}, (1<2) = 
{TRUE}, (“a”=“c”) = {FALSE}, 
(“a”<“c”) = {TRUE}

 A: AND: B, A: OR: B, A: EOR:
B, :NOT:A 

Bitwise AND, OR, exclusive OR 
of A and B; bitwise NOT of A. 

1:AND:3 = 1 1:OR:3 = 3:NOT:0 
= 0xFFFFFFFF

:LEN:S length of the string S :LEN:“ABC” = 3

S:LEFT:B, S:RIGHT:B leftmost or rightmost B 
characters of S 

“ABC”:LEFT:2 = “AB”, “ABC”:
RIGHT:2 = “BC”

S:CC:T the concatenation of S, T “AB”:CC:“C” = “ABC”

L:LAND:M, L:LOR:M, L:LEOR:M logical AND, OR, exclusive OR 
of L and M 

{TRUE}:LAND:{FALSE} = 
{FALSE}

:DEF:X returns TRUE if a variable 
called X is defi ned 

:BASE:A :INDEX:A see the MAP directive  
 

TABLE B1.16  Predefi ned expressions.

 Variable  Value

{ARCHITECURE} The ARM architecture of the CPU (“4T” for ARMv4T)

{ARMASM_VERSION} The assembler version number

{CONFIG} or 
{CODESIZE} 

The bit width of the instructions being assembled (32 for ARM state, 16 for 
Thumb state)

{CPU} The name of the CPU being assembled for

{ENDIAN} The confi gured endianness, “big’’ or “little”

{INTER} {TRUE} if ARM/Thumb interworking is on

{PC}  (alias .) The address of the current instruction being assembled

{ROPI}, {RWPI} {TRUE} if read-only/read-write position independent

{VAR}  (alias @) The MAP counter (see the MAP directive)

In Table B1.15, A and B represent arbitrary integers; S and T, strings; and L and M, 
logical values. You can use labels and other symbols in place of integers in many 
expressions.

Predefi ned Variables

Table B1.16 shows a number of special variables that can appear in expressions. 
These are predefi ned by the assembler, and you cannot override them.

ARM Assembler Directives

Here is an alphabetical list of the more common armasm directives.



ALIGN

       ALIGN   {<expression>, {<offset>}}

Aligns the address of the next instruction to the form q*<expression>+<offset>. 
The alignment is relative to the start of the ELF section so this must be aligned 
appropriately (see the AREA directive). <expression> must be a power of two; the 
default is 4. <offset> is zero if not specifi ed.

AREA

      AREA    <section> {,<attr_1>} {,<attr_2>} ... {,<attr_k>}

Starts a new code or data section of name <section>. Table B1.17 lists the possible 
attributes.

TABLE B1.17 AREA attributes.

 Attribute  Meaning

ALIGN=<expression> Align the ELF section to a 2expression byte boundary.

ASSOC=<sectionname> If this section is linked, also link <sectionname>.

CODE The section contains instructions and is read only.

DATA The section contains data and is read write.

NOINIT The data section does not require initialization.

READONLY The section is read only.

READWRITE The section is read write.

ASSERT

     ASSERT  <logical-expression>

Assemble time assert. If the logical expression is false, then assembly terminates 
with an error.

CN

<name>  CN      <numeric-expression>

Set <name> to be an alias for coprocessor register <numeric-expression>.

CODE16, CODE32

CODE16 tells the assembler to assemble the following instructions as 16-bit Thumb 
instructions. CODE32 indicates 32-bit ARM instructions (the default for armasm).

 B1.4 ARM Assembler Quick Reference B1-53



B1-54 Appendix B1 ARM and Thumb Assembler Instructions

CP

<name>  CP     <numeric-expression>

Set <name> to be an alias for coprocessor number <numeric-expression>.

DATA

<label> DATA

The DATA directive indicates that the label points to data rather than code. In 
Thumb mode this prevents the linker from setting the bottom bit of the label. Bit 
0 of a function pointer or code label is 0 for ARM code and 1 for Thumb code (see 
the BX instruction).

DCB, DCD{U}, DCI, DCQ{U}, DCW{U}

These directives allocate one or more bytes of initialized memory according to 
Table B1.18. Follow each directive with a comma-separated list of initialization 
values. If you specify the optional U suffi x, then the assembler does not insert any 
alignment padding. 

Examples

hello   DCB “hello”, 0
powers  DCD 1, 2, 4, 8, 10, 0x20, 0x40, 0x80
                    DCI 0xEA000000 

TABLE B1.18 Memory initialization directives.

 Directive  Alias  Data size (bytes)  Initialization value

DCB = 1 byte or string

DCW 2 16-bit integer (aligned to 2 bytes)

DCD & 4 32-bit integer (aligned to 4 bytes)

DCQ 8 64-bit integer (aligned to 4 bytes)

DCI 2 or 4 integer defi ning an ARM or Thumb 
instruction

 ELSE (alias |)

See IF.

END

This directive must appear at the end of a source fi le. Assembler source after an  
END directive is ignored.



ENDFUNC (alias ENDP), ENDIF (alias ])

See FUNCTION and IF, respectively.

ENTRY

This directive specifi es the program entry point for the linker. The entry point is 
usually contained in the ARM C library.

EQU (alias *)

<name>  EQU <numeric-expression>

This directive is similar to #defi ne in C. It defi nes a symbol <name> with value 
defi ned by the expression. This value cannot be redefi ned. See Section ARM 
Assembler Variables for the use of redefi nable variables.

EXPORT (alias GLOBAL)

EXPORT  <symbol>{[WEAK]} 

Assembler symbols are local to the object fi le unless exported using this command. 
You can link exported symbols with other object and library fi les. The optional 
[WEAK] suffi x indicates that the linker should try and resolve references with other 
instances of this symbol before using this instance.

EXTERN, IMPORT

EXTERN  <symbol>{[WEAK]}
IMPORT  <symbol>{[WEAK]} 

Both of these directives declare the name of an external symbol, defi ned in another 
object fi le or library. If you use this symbol, then the linker will resolve it at link 
time. For IMPORT, the symbol will be resolved even if you don’t use it. For EXTERN, 
only used symbols are resolved. If you declare the symbol as [WEAK], then no error 
is generated if the linker cannot resolve the symbol; instead the symbol takes the 
value 0.

FIELD (alias #)

See MAP.

FUNCTION (alias PROC) and ENDFUNC (alias ENDP)

The FUNCTION and ENDFUNC directives mark the start and end of an ATPCS-
compliant function. Their main use is to improve the debug view and allow 
backtracking of function calls during debugging. They also allow the profi ler to 

 B1.4 ARM Assembler Quick Reference B1-55



B1-56 Appendix B1 ARM and Thumb Assembler Instructions

more accurately profi le assembly functions. You must precede the function directive 
with the ATPCS function name. For example:

sub     FUNCTION
     SUB     r0, r0, r1
     MOV     pc, lr
     ENDFUNC 

GBLA, GBLL, GBLS

Directives defi ning global arithmetic, logic, and string variables, respectively. See  
Section ARM Assembler Variables.

GET

See INCLUDE.

GLOBAL

See EXPORT.

IF (alias [), ELSE (alias |), ENDIF (alias ])

These directives provide for conditional assembly. They are similar to #if, #else, 
#endif, available in C. The IF directive is followed by a logical expression. The 
ELSE directive may be omitted. For example:

IF ARCHITECTURE=“5TE”
  SMULBB r0, r1, r1
ELSE
  MUL    r0, r1, r1
ENDIF 

IMPORT

See EXTERN.

INCBIN

INCBIN <fi lename>

This directive includes the raw data contained in the binary fi le <fi lename> at the 
current point in the assembly. For example, INCBIN table.dat.

INCLUDE (alias GET)

INCLUDE <fi lename>

Use this directive to include another assembly fi le. It is similar to the #include 
command in C. For example, INCLUDE header.h.



INFO (alias !)

INFO    <numeric_expression>, <string_expression>

If <numeric_expresssion> is nonzero, then assembly terminates with error <string_
expresssion>. Otherwise the assembler prints <string_expression> as an information 
message.

KEEP

KEEP    {<symbol>}

By default the assembler does not include local symbols in the object fi le, only 
exported symbols (see EXPORT). Use KEEP to include all local symbols or a specifi ed 
local symbol. This aids the debug view.

LCLA, LCLL, LCLS

These directives declare macro-local arithmetic, logical, and string variables, 
respectively. See Section ARM Assembler Variables.

LTORG

Use LTORG to insert a literal pool. The assembler uses literal pools to store the 
constants appearing in the LDR Rd,=<value> instruction. See LDR format 19. 
Usually the assembler inserts literal pools automatically, at the end of each area. 
However, if an area is too large, then the LDR instruction cannot reach this literal 
pool using pc-relative addressing. Then you need to insert a literal pool manually, 
near the LDR instruction.

MACRO, MEXIT, MEND

Use these directives to declare a new assembler macro or pseudoinstruction. The 
syntax is

 MACRO
{$<arg_0>} <macro_name> {$<arg_1>} {,$<arg_2>} ... {,$<arg_k>}
 <macro_code>

 MEND 

The macro parameters are stored in the dummy variables $<arg_i>. This 
argument is set to the empty string if you don’t supply a parameter when 
calling the macro. The MEXIT directive terminates the macro early and is usually 
used inside IF statements. For example, the following macro defi nes a new 
pseudoinstruction SMUL, which evaluates to a SMULBB on an ARMv5TE processor, 
and an MUL otherwise.

 B1.4 ARM Assembler Quick Reference B1-57



B1-58 Appendix B1 ARM and Thumb Assembler Instructions

 MACRO
$label SMUL    $a, $b, $c
 IF {ARCHITECTURE}=“5TE”
$label SMULBB $a, $b, $c
 MEXIT
 ENDIF
$label MUL     $a, $b, $c
 MEND 

MAP (alias ˆ), FIELD (alias #)

These directives defi ne objects similar to C structures. MAP sets the base address or 
offset of a structure, and FIELD defi nes structure elements. The syntax is

 MAP <base> {, <base_register>}
<name> FIELD   <fi eld_size_in_bytes>  

The MAP directive sets the value of the special assembler variable {VAR} to the base 
address of the structure. This is either the value <base> or the register relative value 
<base_register>+<base>. Each FIELD directive sets <name> to the value VAR 
and increments VAR by the specifi ed number of bytes. For register relative values, 
the expressions :INDEX:<name> and :BASE:<name> return the element offset from 
base register, and base register number, respectively.

In practice the base register form is not that useful. Instead you can use the plain 
form and mention the base register explicitly in the instruction. This allows you to 
point to a structure of the same type with different base registers. The following 
example sets up a structure on the stack of two int variables:

  MAP 0 ; structure elements offset from 0
count FIELD 4 ; defi ne an int called count 
type FIELD 4 ; defi ne an int called type 
size FIELD 0 ; record the struct size
         
  SUB sp, sp, #size ; make room on the stack
  MOV r0, #0
  STR r0, [sp, #count] ; clear the count element
  STR r0, [sp, #type] ; clear the type element 

NOFP

This directive bans the use of fl oating-point instructions in the assembly fi le. We 
don’t cover fl oating-point instructions and directives in this appendix.



OPT

The OPT directive controls the formatting of the armasm -list option. This is 
seldom used now that source-level debugging is available. See the armasm 
documentation.

PROC

See FUNCTION.

RLIST, RN

<name> RN <numeric expression>
<name> RLIST <list of ARM register enclosed in {}> 

These directives name a list of ARM registers or a single ARM register. For example, 
the following code names r0 as arg and the ATPCS preserved registers as saved.

arg RN 0
saved RLIST {r4-r11} 

ROUT

The ROUT directive defi nes a new local label area. See Section ARM Assembler Labels.

SETA, SETL, SETS

These directives set the values of arithmetic, logical, and string variables, respectively. 
See Section ARM Assembler Variables.

SPACE (alias %)

{<label>} SPACE <numeric_expression> 

This directive reserves <numeric_expression> bytes of space. The bytes are zero 
initialized.

WHILE, WEND

These directives supply an assemble-time looping structure. WHILE is followed by 
a logical expression. While this expression is true, the assembler repeats the code 
between WHILE and WEND. The following example shows how to create an array of 
powers of two from 1 to 65,536.

 B1.4 ARM Assembler Quick Reference B1-59



B1-60 Appendix B1 ARM and Thumb Assembler Instructions

 GBLA count
count SETA 1
 WHILE count<=65536
 DCD count
count SETA 2*count
 WEND 

 B1.5 GNU Assembler Quick Reference

This section summarizes the more useful commands and expressions available with 
the GNU assembler, gas, when you target this assembler for ARM. Each assembly 
line has the format

{<label>:} {<instruction or directive>} @ comment 

Unlike the ARM assembler, you needn’t indent instructions and directives. Labels 
are recognized by the following colon rather than their position at the start of the 
line. The following example shows a simple assembly fi le defi ning a function add 
that returns the sum of the two input arguments:

.section .text, “x”

.global add  @ give the symbol add external linkage

add:
 ADD r0, r0, r1 @ add input arguments
 MOV pc, lr @ return from subroutine 

GNU Assembler Directives
Here is an alphabetical list of the more common gas directives.

.ascii “<string>” 

Inserts the string as data into the assembly, as for DCB in armasm.

.asciz “<string>” 

As for .ascii but follows the string with a zero byte.

.balign <power_of_2> {,<fi ll_value> {,<max_padding>} }



Aligns the address to <power_of_2> bytes. The assembler aligns by adding bytes of 
value <fi ll_value> or a suitable default. The alignment will not occur if more than 
<max_padding> fi ll bytes are required. Similar to ALIGN in armasm.

.byte <byte1> {,<byte2>} ...

Inserts a list of byte values as data into the assembly, as for DCB in armasm. 

.code <number_of_bits>

Sets the instruction width in bits. Use 16 for Thumb and 32 for ARM assembly. 
Similar to CODE16 and CODE32 in armasm.

.else

Use with .if and .endif. Similar to ELSE in armasm.

.end

Marks the end of the assembly fi le. This is usually omitted.

.endif

Ends a conditional compilation code block. See .if, .ifdef, .ifndef. Similar 
to ENDIF in armasm.

.endm

Ends a macro defi nition. See .macro. Similar to MEND in armasm.  

.endr

Ends a repeat loop. See .rept and .irp. Similar to WEND in armasm.

.equ <symbol name>, <value>

This directive sets the value of a symbol. It is similar to EQU in armasm.

.err

Causes assembly to halt with an error.

.exitm

Exit a macro partway through. See .macro. Similar to MEXIT in armasm. 

.global <symbol>

This directive gives the symbol external linkage. It is similar to EXPORT in armasm.

 B1.5 GNU Assembler Quick Reference B1-61



B1-62 Appendix B1 ARM and Thumb Assembler Instructions

.hword <short1> {,<short2>} ...

Inserts a list of 16-bit values as data into the assembly, as for DCW in armasm.

.if <logical_expression>

Makes a block of code conditional. End the block using .endif. Similar to IF in 
armasm. See also .else.

.ifdef <symbol>

Include a block of code if <symbol> is defi ned. End the block with .endif.

.ifndef <symbol>

Include a block of code if <symbol> is not defi ned. End the block with .endif. 

.include “<fi lename>”

Includes the indicated source fi le. Similar to INCLUDE in armasm or # include in C.

.irp <param> {,<val_1>} {,<val_2>} ...

Repeats a block of code, once for each value in the value list. Mark the end of 
the block using a .endr directive. In the repeated code block, use \<param> to 
substitute the associated value in the value list.

.macro <name> {<arg_1>} {,<arg_1>} ... {,<arg_k>}

Defi nes an assembler macro called <name> with k parameters. The macro 
defi nition must end with .endm. To escape from the macro at an earlier point, use 
.exitm. These directives are similar to MACRO, MEND, and MEXIT in armasm. You 
must precede the dummy macro parameters by \. For example:

.macro SHIFTLEFT a, b
 .if \b < 0
 MOV \a, \a, ASR #-\b
 .exitm
 .endif
 MOV \a, \a, LSL #\b

.endm

.rept <number_of_times>

Repeats a block of code the given number of times. End the block with .endr.

<register_name> .req <register_name>



This directive names a register. It is similar to the RN directive in armasm except that 
you must supply a name rather than a number on the right. For example, acc .req r0.

.section <section_name> {,”<fl ags>”}

Starts a new code or data section. Usually you should call a code section .text, 
an initialized data section .data, and an uninitialized data section .bss . These 
have default fl ags, and the linker understands these default names. The directive is 
similar to the armasm directive AREA. Table B1.19 lists possible characters to appear 
in the <fl ags> string for ELF format fi les.

.set <variable_name>, <variable_value>

Flag Meaning

a allocatable section

w writable section

x executable section

TABLE B1.19 .section fl ags for ELF format fi les.

This directive sets the value of a variable. It is similar to SETA in armasm.

.space <number_of_bytes> {,<fi ll_byte>}

Reserves the given number of bytes. The bytes are fi lled with zero or <fi ll_byte> if 
specifi ed. It is similar to SPACE in armasm.

.word <word1> {,<word2>} ...

Inserts a list of 32-bit word values as data into the assembly, as for DCD in armasm.

 B1.5 GNU Assembler Quick Reference B1-63


